stats()   B
last analyzed

Complexity

Conditions 2

Size

Total Lines 41

Duplication

Lines 0
Ratio 0 %
Metric Value
cc 2
dl 0
loc 41
rs 8.8571
1
#
2
# Copyright 2015 Quantopian, Inc.
3
#
4
# Licensed under the Apache License, Version 2.0 (the "License");
5
# you may not use this file except in compliance with the License.
6
# You may obtain a copy of the License at
7
#
8
#     http://www.apache.org/licenses/LICENSE-2.0
9
#
10
# Unless required by applicable law or agreed to in writing, software
11
# distributed under the License is distributed on an "AS IS" BASIS,
12
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
# See the License for the specific language governing permissions and
14
# limitations under the License.
15
16
from __future__ import division
17
18
import logbook
19
import numpy as np
20
import pandas as pd
21
from pandas.lib import checknull
22
from collections import namedtuple
23
try:
24
    # optional cython based OrderedDict
25
    from cyordereddict import OrderedDict
26
except ImportError:
27
    from collections import OrderedDict
28
from six import iteritems, itervalues
29
30
from zipline.protocol import Event, DATASOURCE_TYPE
31
from zipline.finance.transaction import Transaction
32
from zipline.utils.serialization_utils import (
33
    VERSION_LABEL
34
)
35
36
import zipline.protocol as zp
37
from zipline.assets import (
38
    Equity, Future
39
)
40
from zipline.errors import PositionTrackerMissingAssetFinder
41
from . position import positiondict
42
43
log = logbook.Logger('Performance')
44
45
46
PositionStats = namedtuple('PositionStats',
47
                           ['net_exposure',
48
                            'gross_value',
49
                            'gross_exposure',
50
                            'short_value',
51
                            'short_exposure',
52
                            'shorts_count',
53
                            'long_value',
54
                            'long_exposure',
55
                            'longs_count',
56
                            'net_value'])
57
58
59
def calc_position_values(amounts,
60
                         last_sale_prices,
61
                         value_multipliers):
62
    iter_amount_price_multiplier = zip(
63
        amounts,
64
        last_sale_prices,
65
        itervalues(value_multipliers),
66
    )
67
    return [
68
        price * amount * multiplier for
69
        price, amount, multiplier in iter_amount_price_multiplier
70
    ]
71
72
73
def calc_net(values):
74
    # Returns 0.0 if there are no values.
75
    return sum(values, np.float64())
76
77
78
def calc_position_exposures(amounts,
79
                            last_sale_prices,
80
                            exposure_multipliers):
81
    iter_amount_price_multiplier = zip(
82
        amounts,
83
        last_sale_prices,
84
        itervalues(exposure_multipliers),
85
    )
86
    return [
87
        price * amount * multiplier for
88
        price, amount, multiplier in iter_amount_price_multiplier
89
    ]
90
91
92
def calc_long_value(position_values):
93
    return sum(i for i in position_values if i > 0)
94
95
96
def calc_short_value(position_values):
97
    return sum(i for i in position_values if i < 0)
98
99
100
def calc_long_exposure(position_exposures):
101
    return sum(i for i in position_exposures if i > 0)
102
103
104
def calc_short_exposure(position_exposures):
105
    return sum(i for i in position_exposures if i < 0)
106
107
108
def calc_longs_count(position_exposures):
109
    return sum(1 for i in position_exposures if i > 0)
110
111
112
def calc_shorts_count(position_exposures):
113
    return sum(1 for i in position_exposures if i < 0)
114
115
116
def calc_gross_exposure(long_exposure, short_exposure):
117
    return long_exposure + abs(short_exposure)
118
119
120
def calc_gross_value(long_value, short_value):
121
    return long_value + abs(short_value)
122
123
124
class PositionTracker(object):
125
126
    def __init__(self, asset_finder):
127
        self.asset_finder = asset_finder
128
129
        # sid => position object
130
        self.positions = positiondict()
131
        # Arrays for quick calculations of positions value
132
        self._position_value_multipliers = OrderedDict()
133
        self._position_exposure_multipliers = OrderedDict()
134
        self._unpaid_dividends = pd.DataFrame(
135
            columns=zp.DIVIDEND_PAYMENT_FIELDS,
136
        )
137
        self._positions_store = zp.Positions()
138
139
        # Dict, keyed on dates, that contains lists of close position events
140
        # for any Assets in this tracker's positions
141
        self._auto_close_position_sids = {}
142
143
    def _update_asset(self, sid):
144
        try:
145
            self._position_value_multipliers[sid]
146
            self._position_exposure_multipliers[sid]
147
        except KeyError:
148
            # Check if there is an AssetFinder
149
            if self.asset_finder is None:
150
                raise PositionTrackerMissingAssetFinder()
151
152
            # Collect the value multipliers from applicable sids
153
            asset = self.asset_finder.retrieve_asset(sid)
154
            if isinstance(asset, Equity):
155
                self._position_value_multipliers[sid] = 1
156
                self._position_exposure_multipliers[sid] = 1
157
            if isinstance(asset, Future):
158
                self._position_value_multipliers[sid] = 0
159
                self._position_exposure_multipliers[sid] = \
160
                    asset.contract_multiplier
161
                # Futures auto-close timing is controlled by the Future's
162
                # auto_close_date property
163
                self._insert_auto_close_position_date(
164
                    dt=asset.auto_close_date,
165
                    sid=sid
166
                )
167
168
    def _insert_auto_close_position_date(self, dt, sid):
169
        """
170
        Inserts the given SID in to the list of positions to be auto-closed by
171
        the given dt.
172
173
        Parameters
174
        ----------
175
        dt : pandas.Timestamp
176
            The date before-which the given SID will be auto-closed
177
        sid : int
178
            The SID of the Asset to be auto-closed
179
        """
180
        if dt is not None:
181
            self._auto_close_position_sids.setdefault(dt, set()).add(sid)
182
183
    def auto_close_position_events(self, next_trading_day):
184
        """
185
        Generates CLOSE_POSITION events for any SIDs whose auto-close date is
186
        before or equal to the given date.
187
188
        Parameters
189
        ----------
190
        next_trading_day : pandas.Timestamp
191
            The time before-which certain Assets need to be closed
192
193
        Yields
194
        ------
195
        Event
196
            A close position event for any sids that should be closed before
197
            the next_trading_day parameter
198
        """
199
        past_asset_end_dates = set()
200
201
        # Check the auto_close_position_dates dict for SIDs to close
202
        for date, sids in self._auto_close_position_sids.items():
203
            if date > next_trading_day:
204
                continue
205
            past_asset_end_dates.add(date)
206
207
            for sid in sids:
208
                # Yield a CLOSE_POSITION event
209
                event = Event({
210
                    'dt': date,
211
                    'type': DATASOURCE_TYPE.CLOSE_POSITION,
212
                    'sid': sid,
213
                })
214
                yield event
215
216
        # Clear out past dates
217
        while past_asset_end_dates:
218
            self._auto_close_position_sids.pop(past_asset_end_dates.pop())
219
220
    def update_last_sale(self, event):
221
        # NOTE, PerformanceTracker already vetted as TRADE type
222
        sid = event.sid
223
        if sid not in self.positions:
224
            return 0
225
226
        price = event.price
227
228
        if checknull(price):
229
            return 0
230
231
        pos = self.positions[sid]
232
        pos.last_sale_date = event.dt
233
        pos.last_sale_price = price
234
235
    def update_positions(self, positions):
236
        # update positions in batch
237
        self.positions.update(positions)
238
        for sid, pos in iteritems(positions):
239
            self._update_asset(sid)
240
241
    def update_position(self, sid, amount=None, last_sale_price=None,
242
                        last_sale_date=None, cost_basis=None):
243
        pos = self.positions[sid]
244
245
        if amount is not None:
246
            pos.amount = amount
247
            self._update_asset(sid=sid)
248
        if last_sale_price is not None:
249
            pos.last_sale_price = last_sale_price
250
        if last_sale_date is not None:
251
            pos.last_sale_date = last_sale_date
252
        if cost_basis is not None:
253
            pos.cost_basis = cost_basis
254
255
    def execute_transaction(self, txn):
256
        # Update Position
257
        # ----------------
258
        sid = txn.sid
259
        position = self.positions[sid]
260
        position.update(txn)
261
        self._update_asset(sid)
262
263
    def handle_commission(self, sid, cost):
264
        # Adjust the cost basis of the stock if we own it
265
        if sid in self.positions:
266
            self.positions[sid].adjust_commission_cost_basis(sid, cost)
267
268
    def handle_split(self, split):
269
        if split.sid in self.positions:
270
            # Make the position object handle the split. It returns the
271
            # leftover cash from a fractional share, if there is any.
272
            position = self.positions[split.sid]
273
            leftover_cash = position.handle_split(split.sid, split.ratio)
274
            self._update_asset(split.sid)
275
            return leftover_cash
276
277
    def _maybe_earn_dividend(self, dividend):
278
        """
279
        Take a historical dividend record and return a Series with fields in
280
        zipline.protocol.DIVIDEND_FIELDS (plus an 'id' field) representing
281
        the cash/stock amount we are owed when the dividend is paid.
282
        """
283
        if dividend['sid'] in self.positions:
284
            return self.positions[dividend['sid']].earn_dividend(dividend)
285
        else:
286
            return zp.dividend_payment()
287
288
    def earn_dividends(self, dividend_frame):
289
        """
290
        Given a frame of dividends whose ex_dates are all the next trading day,
291
        calculate and store the cash and/or stock payments to be paid on each
292
        dividend's pay date.
293
        """
294
        earned = dividend_frame.apply(self._maybe_earn_dividend, axis=1)\
295
                               .dropna(how='all')
296
        if len(earned) > 0:
297
            # Store the earned dividends so that they can be paid on the
298
            # dividends' pay_dates.
299
            self._unpaid_dividends = pd.concat(
300
                [self._unpaid_dividends, earned],
301
            )
302
303
    def _maybe_pay_dividend(self, dividend):
304
        """
305
        Take a historical dividend record, look up any stored record of
306
        cash/stock we are owed for that dividend, and return a Series
307
        with fields drawn from zipline.protocol.DIVIDEND_PAYMENT_FIELDS.
308
        """
309
        try:
310
            unpaid_dividend = self._unpaid_dividends.loc[dividend['id']]
311
            return unpaid_dividend
312
        except KeyError:
313
            return zp.dividend_payment()
314
315
    def pay_dividends(self, dividend_frame):
316
        """
317
        Given a frame of dividends whose pay_dates are all the next trading
318
        day, grant the cash and/or stock payments that were calculated on the
319
        given dividends' ex dates.
320
        """
321
        payments = dividend_frame.apply(self._maybe_pay_dividend, axis=1)\
322
                                 .dropna(how='all')
323
324
        # Mark these dividends as paid by dropping them from our unpaid
325
        # table.
326
        self._unpaid_dividends.drop(payments.index)
327
328
        # Add stock for any stock dividends paid.  Again, the values here may
329
        # be negative in the case of short positions.
330
        stock_payments = payments[payments['payment_sid'].notnull()]
331
        for _, row in stock_payments.iterrows():
332
            stock = row['payment_sid']
333
            share_count = row['share_count']
334
            # note we create a Position for stock dividend if we don't
335
            # already own the asset
336
            position = self.positions[stock]
337
338
            position.amount += share_count
339
            self._update_asset(stock)
340
341
        # Add cash equal to the net cash payed from all dividends.  Note that
342
        # "negative cash" is effectively paid if we're short an asset,
343
        # representing the fact that we're required to reimburse the owner of
344
        # the stock for any dividends paid while borrowing.
345
        net_cash_payment = payments['cash_amount'].fillna(0).sum()
346
        return net_cash_payment
347
348
    def maybe_create_close_position_transaction(self, event):
349
        try:
350
            pos = self.positions[event.sid]
351
            amount = pos.amount
352
            if amount == 0:
353
                return None
354
        except KeyError:
355
            return None
356
        if 'price' in event:
357
            price = event.price
358
        else:
359
            price = pos.last_sale_price
360
        txn = Transaction(
361
            sid=event.sid,
362
            amount=(-1 * pos.amount),
363
            dt=event.dt,
364
            price=price,
365
            commission=0,
366
            order_id=0
367
        )
368
        return txn
369
370
    def get_positions(self):
371
372
        positions = self._positions_store
373
374
        for sid, pos in iteritems(self.positions):
375
376
            if pos.amount == 0:
377
                # Clear out the position if it has become empty since the last
378
                # time get_positions was called.  Catching the KeyError is
379
                # faster than checking `if sid in positions`, and this can be
380
                # potentially called in a tight inner loop.
381
                try:
382
                    del positions[sid]
383
                except KeyError:
384
                    pass
385
                continue
386
387
            # Note that this will create a position if we don't currently have
388
            # an entry
389
            position = positions[sid]
390
            position.amount = pos.amount
391
            position.cost_basis = pos.cost_basis
392
            position.last_sale_price = pos.last_sale_price
393
        return positions
394
395
    def get_positions_list(self):
396
        positions = []
397
        for sid, pos in iteritems(self.positions):
398
            if pos.amount != 0:
399
                positions.append(pos.to_dict())
400
        return positions
401
402
    def stats(self):
403
        amounts = []
404
        last_sale_prices = []
405
        for pos in itervalues(self.positions):
406
            amounts.append(pos.amount)
407
            last_sale_prices.append(pos.last_sale_price)
408
409
        position_values = calc_position_values(
410
            amounts,
411
            last_sale_prices,
412
            self._position_value_multipliers
413
        )
414
415
        position_exposures = calc_position_exposures(
416
            amounts,
417
            last_sale_prices,
418
            self._position_exposure_multipliers
419
        )
420
421
        long_value = calc_long_value(position_values)
422
        short_value = calc_short_value(position_values)
423
        gross_value = calc_gross_value(long_value, short_value)
424
        long_exposure = calc_long_exposure(position_exposures)
425
        short_exposure = calc_short_exposure(position_exposures)
426
        gross_exposure = calc_gross_exposure(long_exposure, short_exposure)
427
        net_exposure = calc_net(position_exposures)
428
        longs_count = calc_longs_count(position_exposures)
429
        shorts_count = calc_shorts_count(position_exposures)
430
        net_value = calc_net(position_values)
431
432
        return PositionStats(
433
            long_value=long_value,
434
            gross_value=gross_value,
435
            short_value=short_value,
436
            long_exposure=long_exposure,
437
            short_exposure=short_exposure,
438
            gross_exposure=gross_exposure,
439
            net_exposure=net_exposure,
440
            longs_count=longs_count,
441
            shorts_count=shorts_count,
442
            net_value=net_value
443
        )
444
445
    def __getstate__(self):
446
        state_dict = {}
447
448
        state_dict['asset_finder'] = self.asset_finder
449
        state_dict['positions'] = dict(self.positions)
450
        state_dict['unpaid_dividends'] = self._unpaid_dividends
451
        state_dict['auto_close_position_sids'] = self._auto_close_position_sids
452
453
        STATE_VERSION = 3
454
        state_dict[VERSION_LABEL] = STATE_VERSION
455
        return state_dict
456
457
    def __setstate__(self, state):
458
        OLDEST_SUPPORTED_STATE = 3
459
        version = state.pop(VERSION_LABEL)
460
461
        if version < OLDEST_SUPPORTED_STATE:
462
            raise BaseException("PositionTracker saved state is too old.")
463
464
        self.asset_finder = state['asset_finder']
465
        self.positions = positiondict()
466
        # note that positions_store is temporary and gets regened from
467
        # .positions
468
        self._positions_store = zp.Positions()
469
470
        self._unpaid_dividends = state['unpaid_dividends']
471
        self._auto_close_position_sids = state['auto_close_position_sids']
472
473
        # Arrays for quick calculations of positions value
474
        self._position_value_multipliers = OrderedDict()
475
        self._position_exposure_multipliers = OrderedDict()
476
477
        # Update positions is called without a finder
478
        self.update_positions(state['positions'])
479