1
|
|
|
# |
2
|
|
|
# Copyright 2015 Quantopian, Inc. |
3
|
|
|
# |
4
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
5
|
|
|
# you may not use this file except in compliance with the License. |
6
|
|
|
# You may obtain a copy of the License at |
7
|
|
|
# |
8
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
9
|
|
|
# |
10
|
|
|
# Unless required by applicable law or agreed to in writing, software |
11
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
12
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13
|
|
|
# See the License for the specific language governing permissions and |
14
|
|
|
# limitations under the License. |
15
|
|
|
|
16
|
|
|
""" |
17
|
|
|
|
18
|
|
|
Performance Tracking |
19
|
|
|
==================== |
20
|
|
|
|
21
|
|
|
+-----------------+----------------------------------------------------+ |
22
|
|
|
| key | value | |
23
|
|
|
+=================+====================================================+ |
24
|
|
|
| period_start | The beginning of the period to be tracked. datetime| |
25
|
|
|
| | in pytz.utc timezone. Will always be 0:00 on the | |
26
|
|
|
| | date in UTC. The fact that the time may be on the | |
27
|
|
|
| | prior day in the exchange's local time is ignored | |
28
|
|
|
+-----------------+----------------------------------------------------+ |
29
|
|
|
| period_end | The end of the period to be tracked. datetime | |
30
|
|
|
| | in pytz.utc timezone. Will always be 23:59 on the | |
31
|
|
|
| | date in UTC. The fact that the time may be on the | |
32
|
|
|
| | next day in the exchange's local time is ignored | |
33
|
|
|
+-----------------+----------------------------------------------------+ |
34
|
|
|
| progress | percentage of test completed | |
35
|
|
|
+-----------------+----------------------------------------------------+ |
36
|
|
|
| capital_base | The initial capital assumed for this tracker. | |
37
|
|
|
+-----------------+----------------------------------------------------+ |
38
|
|
|
| cumulative_perf | A dictionary representing the cumulative | |
39
|
|
|
| | performance through all the events delivered to | |
40
|
|
|
| | this tracker. For details see the comments on | |
41
|
|
|
| | :py:meth:`PerformancePeriod.to_dict` | |
42
|
|
|
+-----------------+----------------------------------------------------+ |
43
|
|
|
| todays_perf | A dictionary representing the cumulative | |
44
|
|
|
| | performance through all the events delivered to | |
45
|
|
|
| | this tracker with datetime stamps between last_open| |
46
|
|
|
| | and last_close. For details see the comments on | |
47
|
|
|
| | :py:meth:`PerformancePeriod.to_dict` | |
48
|
|
|
| | TODO: adding this because we calculate it. May be | |
49
|
|
|
| | overkill. | |
50
|
|
|
+-----------------+----------------------------------------------------+ |
51
|
|
|
| cumulative_risk | A dictionary representing the risk metrics | |
52
|
|
|
| _metrics | calculated based on the positions aggregated | |
53
|
|
|
| | through all the events delivered to this tracker. | |
54
|
|
|
| | For details look at the comments for | |
55
|
|
|
| | :py:meth:`zipline.finance.risk.RiskMetrics.to_dict`| |
56
|
|
|
+-----------------+----------------------------------------------------+ |
57
|
|
|
|
58
|
|
|
""" |
59
|
|
|
|
60
|
|
|
from __future__ import division |
61
|
|
|
import logbook |
62
|
|
|
import pickle |
63
|
|
|
from six import iteritems |
64
|
|
|
from datetime import datetime |
65
|
|
|
|
66
|
|
|
import numpy as np |
67
|
|
|
import pandas as pd |
68
|
|
|
from pandas.tseries.tools import normalize_date |
69
|
|
|
|
70
|
|
|
import zipline.finance.risk as risk |
71
|
|
|
from . period import PerformancePeriod |
72
|
|
|
|
73
|
|
|
from zipline.utils.serialization_utils import ( |
74
|
|
|
VERSION_LABEL |
75
|
|
|
) |
76
|
|
|
from . position_tracker import PositionTracker |
77
|
|
|
|
78
|
|
|
log = logbook.Logger('Performance') |
79
|
|
|
|
80
|
|
|
|
81
|
|
|
class PerformanceTracker(object): |
82
|
|
|
""" |
83
|
|
|
Tracks the performance of the algorithm. |
84
|
|
|
""" |
85
|
|
|
def __init__(self, sim_params, env): |
86
|
|
|
|
87
|
|
|
self.sim_params = sim_params |
88
|
|
|
self.env = env |
89
|
|
|
|
90
|
|
|
self.period_start = self.sim_params.period_start |
91
|
|
|
self.period_end = self.sim_params.period_end |
92
|
|
|
self.last_close = self.sim_params.last_close |
93
|
|
|
first_open = self.sim_params.first_open.tz_convert( |
94
|
|
|
self.env.exchange_tz |
95
|
|
|
) |
96
|
|
|
self.day = pd.Timestamp(datetime(first_open.year, first_open.month, |
97
|
|
|
first_open.day), tz='UTC') |
98
|
|
|
self.market_open, self.market_close = env.get_open_and_close(self.day) |
99
|
|
|
self.total_days = self.sim_params.days_in_period |
100
|
|
|
self.capital_base = self.sim_params.capital_base |
101
|
|
|
self.emission_rate = sim_params.emission_rate |
102
|
|
|
|
103
|
|
|
all_trading_days = env.trading_days |
104
|
|
|
mask = ((all_trading_days >= normalize_date(self.period_start)) & |
105
|
|
|
(all_trading_days <= normalize_date(self.period_end))) |
106
|
|
|
|
107
|
|
|
self.trading_days = all_trading_days[mask] |
108
|
|
|
|
109
|
|
|
self.dividend_frame = pd.DataFrame() |
110
|
|
|
self._dividend_count = 0 |
111
|
|
|
|
112
|
|
|
self.position_tracker = PositionTracker(asset_finder=env.asset_finder) |
113
|
|
|
|
114
|
|
|
if self.emission_rate == 'daily': |
115
|
|
|
self.all_benchmark_returns = pd.Series( |
116
|
|
|
index=self.trading_days) |
117
|
|
|
self.cumulative_risk_metrics = \ |
118
|
|
|
risk.RiskMetricsCumulative(self.sim_params, self.env) |
119
|
|
|
|
120
|
|
|
elif self.emission_rate == 'minute': |
121
|
|
|
self.all_benchmark_returns = pd.Series(index=pd.date_range( |
122
|
|
|
self.sim_params.first_open, self.sim_params.last_close, |
123
|
|
|
freq='Min')) |
124
|
|
|
|
125
|
|
|
self.cumulative_risk_metrics = \ |
126
|
|
|
risk.RiskMetricsCumulative(self.sim_params, self.env, |
127
|
|
|
create_first_day_stats=True) |
128
|
|
|
|
129
|
|
|
# this performance period will span the entire simulation from |
130
|
|
|
# inception. |
131
|
|
|
self.cumulative_performance = PerformancePeriod( |
132
|
|
|
# initial cash is your capital base. |
133
|
|
|
starting_cash=self.capital_base, |
134
|
|
|
# the cumulative period will be calculated over the entire test. |
135
|
|
|
period_open=self.period_start, |
136
|
|
|
period_close=self.period_end, |
137
|
|
|
# don't save the transactions for the cumulative |
138
|
|
|
# period |
139
|
|
|
keep_transactions=False, |
140
|
|
|
keep_orders=False, |
141
|
|
|
# don't serialize positions for cumulative period |
142
|
|
|
serialize_positions=False, |
143
|
|
|
asset_finder=self.env.asset_finder, |
144
|
|
|
) |
145
|
|
|
self.cumulative_performance.position_tracker = self.position_tracker |
146
|
|
|
|
147
|
|
|
# this performance period will span just the current market day |
148
|
|
|
self.todays_performance = PerformancePeriod( |
149
|
|
|
# initial cash is your capital base. |
150
|
|
|
starting_cash=self.capital_base, |
151
|
|
|
# the daily period will be calculated for the market day |
152
|
|
|
period_open=self.market_open, |
153
|
|
|
period_close=self.market_close, |
154
|
|
|
keep_transactions=True, |
155
|
|
|
keep_orders=True, |
156
|
|
|
serialize_positions=True, |
157
|
|
|
asset_finder=self.env.asset_finder, |
158
|
|
|
) |
159
|
|
|
self.todays_performance.position_tracker = self.position_tracker |
160
|
|
|
|
161
|
|
|
self.saved_dt = self.period_start |
162
|
|
|
# one indexed so that we reach 100% |
163
|
|
|
self.day_count = 0.0 |
164
|
|
|
self.txn_count = 0 |
165
|
|
|
|
166
|
|
|
self.account_needs_update = True |
167
|
|
|
self._account = None |
168
|
|
|
|
169
|
|
|
def __repr__(self): |
170
|
|
|
return "%s(%r)" % ( |
171
|
|
|
self.__class__.__name__, |
172
|
|
|
{'simulation parameters': self.sim_params}) |
173
|
|
|
|
174
|
|
|
@property |
175
|
|
|
def progress(self): |
176
|
|
|
if self.emission_rate == 'minute': |
177
|
|
|
# Fake a value |
178
|
|
|
return 1.0 |
179
|
|
|
elif self.emission_rate == 'daily': |
180
|
|
|
return self.day_count / self.total_days |
181
|
|
|
|
182
|
|
|
def set_date(self, date): |
183
|
|
|
if self.emission_rate == 'minute': |
184
|
|
|
self.saved_dt = date |
185
|
|
|
self.todays_performance.period_close = self.saved_dt |
186
|
|
|
|
187
|
|
|
def update_dividends(self, new_dividends): |
188
|
|
|
""" |
189
|
|
|
Update our dividend frame with new dividends. @new_dividends should be |
190
|
|
|
a DataFrame with columns containing at least the entries in |
191
|
|
|
zipline.protocol.DIVIDEND_FIELDS. |
192
|
|
|
""" |
193
|
|
|
|
194
|
|
|
# Mark each new dividend with a unique integer id. This ensures that |
195
|
|
|
# we can differentiate dividends whose date/sid fields are otherwise |
196
|
|
|
# identical. |
197
|
|
|
new_dividends['id'] = np.arange( |
198
|
|
|
self._dividend_count, |
199
|
|
|
self._dividend_count + len(new_dividends), |
200
|
|
|
) |
201
|
|
|
self._dividend_count += len(new_dividends) |
202
|
|
|
|
203
|
|
|
self.dividend_frame = pd.concat( |
204
|
|
|
[self.dividend_frame, new_dividends] |
205
|
|
|
).sort(['pay_date', 'ex_date']).set_index('id', drop=False) |
206
|
|
|
|
207
|
|
|
def initialize_dividends_from_other(self, other): |
208
|
|
|
""" |
209
|
|
|
Helper for copying dividends to a new PerformanceTracker while |
210
|
|
|
preserving dividend count. Useful if a simulation needs to create a |
211
|
|
|
new PerformanceTracker mid-stream and wants to preserve stored dividend |
212
|
|
|
info. |
213
|
|
|
|
214
|
|
|
Note that this does not copy unpaid dividends. |
215
|
|
|
""" |
216
|
|
|
self.dividend_frame = other.dividend_frame |
217
|
|
|
self._dividend_count = other._dividend_count |
218
|
|
|
|
219
|
|
|
def handle_sid_removed_from_universe(self, sid): |
220
|
|
|
""" |
221
|
|
|
This method handles any behaviors that must occur when a SID leaves the |
222
|
|
|
universe of the TradingAlgorithm. |
223
|
|
|
|
224
|
|
|
Parameters |
225
|
|
|
__________ |
226
|
|
|
sid : int |
227
|
|
|
The sid of the Asset being removed from the universe. |
228
|
|
|
""" |
229
|
|
|
|
230
|
|
|
# Drop any dividends for the sid from the dividends frame |
231
|
|
|
self.dividend_frame = self.dividend_frame[ |
232
|
|
|
self.dividend_frame.sid != sid |
233
|
|
|
] |
234
|
|
|
|
235
|
|
|
def update_performance(self): |
236
|
|
|
# calculate performance as of last trade |
237
|
|
|
self.cumulative_performance.calculate_performance() |
238
|
|
|
self.todays_performance.calculate_performance() |
239
|
|
|
|
240
|
|
|
def get_portfolio(self, performance_needs_update): |
241
|
|
|
if performance_needs_update: |
242
|
|
|
self.update_performance() |
243
|
|
|
self.account_needs_update = True |
244
|
|
|
return self.cumulative_performance.as_portfolio() |
245
|
|
|
|
246
|
|
|
def get_account(self, performance_needs_update): |
247
|
|
|
if performance_needs_update: |
248
|
|
|
self.update_performance() |
249
|
|
|
self.account_needs_update = True |
250
|
|
|
if self.account_needs_update: |
251
|
|
|
self._update_account() |
252
|
|
|
return self._account |
253
|
|
|
|
254
|
|
|
def _update_account(self): |
255
|
|
|
self._account = self.cumulative_performance.as_account() |
256
|
|
|
self.account_needs_update = False |
257
|
|
|
|
258
|
|
|
def to_dict(self, emission_type=None): |
259
|
|
|
""" |
260
|
|
|
Creates a dictionary representing the state of this tracker. |
261
|
|
|
Returns a dict object of the form described in header comments. |
262
|
|
|
""" |
263
|
|
|
|
264
|
|
|
# Default to the emission rate of this tracker if no type is provided |
265
|
|
|
if emission_type is None: |
266
|
|
|
emission_type = self.emission_rate |
267
|
|
|
|
268
|
|
|
_dict = { |
269
|
|
|
'period_start': self.period_start, |
270
|
|
|
'period_end': self.period_end, |
271
|
|
|
'capital_base': self.capital_base, |
272
|
|
|
'cumulative_perf': self.cumulative_performance.to_dict(), |
273
|
|
|
'progress': self.progress, |
274
|
|
|
'cumulative_risk_metrics': self.cumulative_risk_metrics.to_dict() |
275
|
|
|
} |
276
|
|
|
if emission_type == 'daily': |
277
|
|
|
_dict['daily_perf'] = self.todays_performance.to_dict() |
278
|
|
|
elif emission_type == 'minute': |
279
|
|
|
_dict['minute_perf'] = self.todays_performance.to_dict( |
280
|
|
|
self.saved_dt) |
281
|
|
|
else: |
282
|
|
|
raise ValueError("Invalid emission type: %s" % emission_type) |
283
|
|
|
|
284
|
|
|
return _dict |
285
|
|
|
|
286
|
|
|
def _handle_event_price(self, event): |
287
|
|
|
self.position_tracker.update_last_sale(event) |
288
|
|
|
|
289
|
|
|
def process_trade(self, event): |
290
|
|
|
self._handle_event_price(event) |
291
|
|
|
|
292
|
|
|
def process_transaction(self, event): |
293
|
|
|
self._handle_event_price(event) |
294
|
|
|
self.txn_count += 1 |
295
|
|
|
self.cumulative_performance.handle_execution(event) |
296
|
|
|
self.todays_performance.handle_execution(event) |
297
|
|
|
self.position_tracker.execute_transaction(event) |
298
|
|
|
|
299
|
|
|
def process_dividend(self, dividend): |
300
|
|
|
|
301
|
|
|
log.info("Ignoring DIVIDEND event.") |
302
|
|
|
|
303
|
|
|
def process_split(self, event): |
304
|
|
|
leftover_cash = self.position_tracker.handle_split(event) |
305
|
|
|
if leftover_cash > 0: |
306
|
|
|
self.cumulative_performance.handle_cash_payment(leftover_cash) |
307
|
|
|
self.todays_performance.handle_cash_payment(leftover_cash) |
308
|
|
|
|
309
|
|
|
def process_order(self, event): |
310
|
|
|
self.cumulative_performance.record_order(event) |
311
|
|
|
self.todays_performance.record_order(event) |
312
|
|
|
|
313
|
|
|
def process_commission(self, commission): |
314
|
|
|
sid = commission.sid |
315
|
|
|
cost = commission.cost |
316
|
|
|
|
317
|
|
|
self.position_tracker.handle_commission(sid, cost) |
318
|
|
|
self.cumulative_performance.handle_commission(cost) |
319
|
|
|
self.todays_performance.handle_commission(cost) |
320
|
|
|
|
321
|
|
|
def process_benchmark(self, event): |
322
|
|
|
if self.sim_params.data_frequency == 'minute' and \ |
323
|
|
|
self.sim_params.emission_rate == 'daily': |
324
|
|
|
# Minute data benchmarks should have a timestamp of market |
325
|
|
|
# close, so that calculations are triggered at the right time. |
326
|
|
|
# However, risk module uses midnight as the 'day' |
327
|
|
|
# marker for returns, so adjust back to midnight. |
328
|
|
|
midnight = pd.tseries.tools.normalize_date(event.dt) |
329
|
|
|
else: |
330
|
|
|
midnight = event.dt |
331
|
|
|
|
332
|
|
|
if midnight not in self.all_benchmark_returns.index: |
333
|
|
|
raise AssertionError( |
334
|
|
|
("Date %s not allocated in all_benchmark_returns. " |
335
|
|
|
"Calendar seems to mismatch with benchmark. " |
336
|
|
|
"Benchmark container is=%s" % |
337
|
|
|
(midnight, |
338
|
|
|
self.all_benchmark_returns.index))) |
339
|
|
|
|
340
|
|
|
self.all_benchmark_returns[midnight] = event.returns |
341
|
|
|
|
342
|
|
|
def process_close_position(self, event): |
343
|
|
|
|
344
|
|
|
# CLOSE_POSITION events that contain prices that must be handled as |
345
|
|
|
# a final trade event |
346
|
|
|
if 'price' in event: |
347
|
|
|
self.process_trade(event) |
348
|
|
|
|
349
|
|
|
txn = self.position_tracker.\ |
350
|
|
|
maybe_create_close_position_transaction(event) |
351
|
|
|
if txn: |
352
|
|
|
self.process_transaction(txn) |
353
|
|
|
|
354
|
|
|
def check_upcoming_dividends(self, next_trading_day): |
355
|
|
|
""" |
356
|
|
|
Check if we currently own any stocks with dividends whose ex_date is |
357
|
|
|
the next trading day. Track how much we should be payed on those |
358
|
|
|
dividends' pay dates. |
359
|
|
|
|
360
|
|
|
Then check if we are owed cash/stock for any dividends whose pay date |
361
|
|
|
is the next trading day. Apply all such benefits, then recalculate |
362
|
|
|
performance. |
363
|
|
|
""" |
364
|
|
|
if len(self.dividend_frame) == 0: |
365
|
|
|
# We don't currently know about any dividends for this simulation |
366
|
|
|
# period, so bail. |
367
|
|
|
return |
368
|
|
|
|
369
|
|
|
# Dividends whose ex_date is the next trading day. We need to check if |
370
|
|
|
# we own any of these stocks so we know to pay them out when the pay |
371
|
|
|
# date comes. |
372
|
|
|
ex_date_mask = (self.dividend_frame['ex_date'] == next_trading_day) |
373
|
|
|
dividends_earnable = self.dividend_frame[ex_date_mask] |
374
|
|
|
|
375
|
|
|
# Dividends whose pay date is the next trading day. If we held any of |
376
|
|
|
# these stocks on midnight before the ex_date, we need to pay these out |
377
|
|
|
# now. |
378
|
|
|
pay_date_mask = (self.dividend_frame['pay_date'] == next_trading_day) |
379
|
|
|
dividends_payable = self.dividend_frame[pay_date_mask] |
380
|
|
|
|
381
|
|
|
position_tracker = self.position_tracker |
382
|
|
|
if len(dividends_earnable): |
383
|
|
|
position_tracker.earn_dividends(dividends_earnable) |
384
|
|
|
|
385
|
|
|
if not len(dividends_payable): |
386
|
|
|
return |
387
|
|
|
|
388
|
|
|
net_cash_payment = position_tracker.pay_dividends(dividends_payable) |
389
|
|
|
|
390
|
|
|
self.cumulative_performance.handle_dividends_paid(net_cash_payment) |
391
|
|
|
self.todays_performance.handle_dividends_paid(net_cash_payment) |
392
|
|
|
|
393
|
|
|
def check_asset_auto_closes(self, next_trading_day): |
394
|
|
|
""" |
395
|
|
|
Check if the position tracker currently owns any Assets with an |
396
|
|
|
auto-close date that is the next trading day. Close those positions. |
397
|
|
|
|
398
|
|
|
Parameters |
399
|
|
|
---------- |
400
|
|
|
next_trading_day : pandas.Timestamp |
401
|
|
|
The next trading day of the simulation |
402
|
|
|
""" |
403
|
|
|
auto_close_events = self.position_tracker.auto_close_position_events( |
404
|
|
|
next_trading_day=next_trading_day |
405
|
|
|
) |
406
|
|
|
for event in auto_close_events: |
407
|
|
|
self.process_close_position(event) |
408
|
|
|
|
409
|
|
|
def handle_minute_close(self, dt): |
410
|
|
|
""" |
411
|
|
|
Handles the close of the given minute. This includes handling |
412
|
|
|
market-close functions if the given minute is the end of the market |
413
|
|
|
day. |
414
|
|
|
|
415
|
|
|
Parameters |
416
|
|
|
__________ |
417
|
|
|
dt : Timestamp |
418
|
|
|
The minute that is ending |
419
|
|
|
|
420
|
|
|
Returns |
421
|
|
|
_______ |
422
|
|
|
(dict, dict/None) |
423
|
|
|
A tuple of the minute perf packet and daily perf packet. |
424
|
|
|
If the market day has not ended, the daily perf packet is None. |
425
|
|
|
""" |
426
|
|
|
self.update_performance() |
427
|
|
|
todays_date = normalize_date(dt) |
428
|
|
|
account = self.get_account(False) |
429
|
|
|
|
430
|
|
|
bench_returns = self.all_benchmark_returns.loc[todays_date:dt] |
431
|
|
|
# cumulative returns |
432
|
|
|
bench_since_open = (1. + bench_returns).prod() - 1 |
433
|
|
|
|
434
|
|
|
self.cumulative_risk_metrics.update(todays_date, |
435
|
|
|
self.todays_performance.returns, |
436
|
|
|
bench_since_open, |
437
|
|
|
account.leverage) |
438
|
|
|
|
439
|
|
|
minute_packet = self.to_dict(emission_type='minute') |
440
|
|
|
|
441
|
|
|
# if this is the close, update dividends for the next day. |
442
|
|
|
# Return the performance tuple |
443
|
|
|
if dt == self.market_close: |
444
|
|
|
return (minute_packet, self._handle_market_close(todays_date)) |
445
|
|
|
else: |
446
|
|
|
return (minute_packet, None) |
447
|
|
|
|
448
|
|
|
def handle_market_close_daily(self): |
449
|
|
|
""" |
450
|
|
|
Function called after handle_data when running with daily emission |
451
|
|
|
rate. |
452
|
|
|
""" |
453
|
|
|
self.update_performance() |
454
|
|
|
completed_date = self.day |
455
|
|
|
account = self.get_account(False) |
456
|
|
|
|
457
|
|
|
# update risk metrics for cumulative performance |
458
|
|
|
self.cumulative_risk_metrics.update( |
459
|
|
|
completed_date, |
460
|
|
|
self.todays_performance.returns, |
461
|
|
|
self.all_benchmark_returns[completed_date], |
462
|
|
|
account.leverage) |
463
|
|
|
|
464
|
|
|
return self._handle_market_close(completed_date) |
465
|
|
|
|
466
|
|
|
def _handle_market_close(self, completed_date): |
467
|
|
|
|
468
|
|
|
# increment the day counter before we move markers forward. |
469
|
|
|
self.day_count += 1.0 |
470
|
|
|
|
471
|
|
|
# Get the next trading day and, if it is past the bounds of this |
472
|
|
|
# simulation, return the daily perf packet |
473
|
|
|
next_trading_day = self.env.next_trading_day(completed_date) |
474
|
|
|
|
475
|
|
|
# Check if any assets need to be auto-closed before generating today's |
476
|
|
|
# perf period |
477
|
|
|
if next_trading_day: |
478
|
|
|
self.check_asset_auto_closes(next_trading_day=next_trading_day) |
479
|
|
|
|
480
|
|
|
# Take a snapshot of our current performance to return to the |
481
|
|
|
# browser. |
482
|
|
|
daily_update = self.to_dict(emission_type='daily') |
483
|
|
|
|
484
|
|
|
# On the last day of the test, don't create tomorrow's performance |
485
|
|
|
# period. We may not be able to find the next trading day if we're at |
486
|
|
|
# the end of our historical data |
487
|
|
|
if self.market_close >= self.last_close: |
488
|
|
|
return daily_update |
489
|
|
|
|
490
|
|
|
# move the market day markers forward |
491
|
|
|
self.market_open, self.market_close = \ |
492
|
|
|
self.env.next_open_and_close(self.day) |
493
|
|
|
self.day = self.env.next_trading_day(self.day) |
494
|
|
|
|
495
|
|
|
# Roll over positions to current day. |
496
|
|
|
self.todays_performance.rollover() |
497
|
|
|
self.todays_performance.period_open = self.market_open |
498
|
|
|
self.todays_performance.period_close = self.market_close |
499
|
|
|
|
500
|
|
|
# If the next trading day is irrelevant, then return the daily packet |
501
|
|
|
if (next_trading_day is None) or (next_trading_day >= self.last_close): |
502
|
|
|
return daily_update |
503
|
|
|
|
504
|
|
|
# Check for any dividends and auto-closes, then return the daily perf |
505
|
|
|
# packet |
506
|
|
|
self.check_upcoming_dividends(next_trading_day=next_trading_day) |
507
|
|
|
return daily_update |
508
|
|
|
|
509
|
|
|
def handle_simulation_end(self): |
510
|
|
|
""" |
511
|
|
|
When the simulation is complete, run the full period risk report |
512
|
|
|
and send it out on the results socket. |
513
|
|
|
""" |
514
|
|
|
|
515
|
|
|
log_msg = "Simulated {n} trading days out of {m}." |
516
|
|
|
log.info(log_msg.format(n=int(self.day_count), m=self.total_days)) |
517
|
|
|
log.info("first open: {d}".format( |
518
|
|
|
d=self.sim_params.first_open)) |
519
|
|
|
log.info("last close: {d}".format( |
520
|
|
|
d=self.sim_params.last_close)) |
521
|
|
|
|
522
|
|
|
bms = pd.Series( |
523
|
|
|
index=self.cumulative_risk_metrics.cont_index, |
524
|
|
|
data=self.cumulative_risk_metrics.benchmark_returns_cont) |
525
|
|
|
ars = pd.Series( |
526
|
|
|
index=self.cumulative_risk_metrics.cont_index, |
527
|
|
|
data=self.cumulative_risk_metrics.algorithm_returns_cont) |
528
|
|
|
acl = self.cumulative_risk_metrics.algorithm_cumulative_leverages |
529
|
|
|
self.risk_report = risk.RiskReport( |
530
|
|
|
ars, |
531
|
|
|
self.sim_params, |
532
|
|
|
benchmark_returns=bms, |
533
|
|
|
algorithm_leverages=acl, |
534
|
|
|
env=self.env) |
535
|
|
|
|
536
|
|
|
risk_dict = self.risk_report.to_dict() |
537
|
|
|
return risk_dict |
538
|
|
|
|
539
|
|
|
def __getstate__(self): |
540
|
|
|
state_dict = \ |
541
|
|
|
{k: v for k, v in iteritems(self.__dict__) |
542
|
|
|
if not k.startswith('_')} |
543
|
|
|
|
544
|
|
|
state_dict['dividend_frame'] = pickle.dumps(self.dividend_frame) |
545
|
|
|
|
546
|
|
|
state_dict['_dividend_count'] = self._dividend_count |
547
|
|
|
|
548
|
|
|
STATE_VERSION = 4 |
549
|
|
|
state_dict[VERSION_LABEL] = STATE_VERSION |
550
|
|
|
|
551
|
|
|
return state_dict |
552
|
|
|
|
553
|
|
|
def __setstate__(self, state): |
554
|
|
|
|
555
|
|
|
OLDEST_SUPPORTED_STATE = 4 |
556
|
|
|
version = state.pop(VERSION_LABEL) |
557
|
|
|
|
558
|
|
|
if version < OLDEST_SUPPORTED_STATE: |
559
|
|
|
raise BaseException("PerformanceTracker saved state is too old.") |
560
|
|
|
|
561
|
|
|
self.__dict__.update(state) |
562
|
|
|
|
563
|
|
|
# Handle the dividend frame specially |
564
|
|
|
self.dividend_frame = pickle.loads(state['dividend_frame']) |
565
|
|
|
|
566
|
|
|
# properly setup the perf periods |
567
|
|
|
p_types = ['cumulative', 'todays'] |
568
|
|
|
for p_type in p_types: |
569
|
|
|
name = p_type + '_performance' |
570
|
|
|
period = getattr(self, name, None) |
571
|
|
|
if period is None: |
572
|
|
|
continue |
573
|
|
|
period._position_tracker = self.position_tracker |
574
|
|
|
|