1
|
|
|
# |
2
|
|
|
# Copyright 2014 Quantopian, Inc. |
3
|
|
|
# |
4
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
5
|
|
|
# you may not use this file except in compliance with the License. |
6
|
|
|
# You may obtain a copy of the License at |
7
|
|
|
# |
8
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
9
|
|
|
# |
10
|
|
|
# Unless required by applicable law or agreed to in writing, software |
11
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
12
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13
|
|
|
# See the License for the specific language governing permissions and |
14
|
|
|
# limitations under the License. |
15
|
|
|
|
16
|
|
|
import bisect |
17
|
|
|
import logbook |
18
|
|
|
import datetime |
19
|
|
|
|
20
|
|
|
import pandas as pd |
21
|
|
|
import numpy as np |
22
|
|
|
from six import string_types |
23
|
|
|
from sqlalchemy import create_engine |
24
|
|
|
|
25
|
|
|
from zipline.data.loader import load_market_data |
26
|
|
|
from zipline.utils import tradingcalendar |
27
|
|
|
from zipline.assets import AssetFinder |
28
|
|
|
from zipline.assets.asset_writer import ( |
29
|
|
|
AssetDBWriterFromList, |
30
|
|
|
AssetDBWriterFromDictionary, |
31
|
|
|
AssetDBWriterFromDataFrame) |
32
|
|
|
from zipline.errors import ( |
33
|
|
|
NoFurtherDataError |
34
|
|
|
) |
35
|
|
|
|
36
|
|
|
|
37
|
|
|
log = logbook.Logger('Trading') |
38
|
|
|
|
39
|
|
|
|
40
|
|
|
# The financial simulations in zipline depend on information |
41
|
|
|
# about the benchmark index and the risk free rates of return. |
42
|
|
|
# The benchmark index defines the benchmark returns used in |
43
|
|
|
# the calculation of performance metrics such as alpha/beta. Many |
44
|
|
|
# components, including risk, performance, transforms, and |
45
|
|
|
# batch_transforms, need access to a calendar of trading days and |
46
|
|
|
# market hours. The TradingEnvironment maintains two time keeping |
47
|
|
|
# facilities: |
48
|
|
|
# - a DatetimeIndex of trading days for calendar calculations |
49
|
|
|
# - a timezone name, which should be local to the exchange |
50
|
|
|
# hosting the benchmark index. All dates are normalized to UTC |
51
|
|
|
# for serialization and storage, and the timezone is used to |
52
|
|
|
# ensure proper rollover through daylight savings and so on. |
53
|
|
|
# |
54
|
|
|
# User code will not normally need to use TradingEnvironment |
55
|
|
|
# directly. If you are extending zipline's core financial |
56
|
|
|
# components and need to use the environment, you must import the module and |
57
|
|
|
# build a new TradingEnvironment object, then pass that TradingEnvironment as |
58
|
|
|
# the 'env' arg to your TradingAlgorithm. |
59
|
|
|
|
60
|
|
|
class TradingEnvironment(object): |
61
|
|
|
|
62
|
|
|
# Token used as a substitute for pickling objects that contain a |
63
|
|
|
# reference to a TradingEnvironment |
64
|
|
|
PERSISTENT_TOKEN = "<TradingEnvironment>" |
65
|
|
|
|
66
|
|
|
def __init__( |
67
|
|
|
self, |
68
|
|
|
load=None, |
69
|
|
|
bm_symbol='^GSPC', |
70
|
|
|
exchange_tz="US/Eastern", |
71
|
|
|
max_date=None, |
72
|
|
|
env_trading_calendar=tradingcalendar, |
73
|
|
|
asset_db_path=':memory:' |
74
|
|
|
): |
75
|
|
|
""" |
76
|
|
|
@load is function that returns benchmark_returns and treasury_curves |
77
|
|
|
The treasury_curves are expected to be a DataFrame with an index of |
78
|
|
|
dates and columns of the curve names, e.g. '10year', '1month', etc. |
79
|
|
|
""" |
80
|
|
|
self.trading_day = env_trading_calendar.trading_day.copy() |
81
|
|
|
|
82
|
|
|
# `tc_td` is short for "trading calendar trading days" |
83
|
|
|
tc_td = env_trading_calendar.trading_days |
84
|
|
|
|
85
|
|
|
if max_date: |
86
|
|
|
self.trading_days = tc_td[tc_td <= max_date].copy() |
87
|
|
|
else: |
88
|
|
|
self.trading_days = tc_td.copy() |
89
|
|
|
|
90
|
|
|
self.first_trading_day = self.trading_days[0] |
91
|
|
|
self.last_trading_day = self.trading_days[-1] |
92
|
|
|
|
93
|
|
|
self.early_closes = env_trading_calendar.get_early_closes( |
94
|
|
|
self.first_trading_day, self.last_trading_day) |
95
|
|
|
|
96
|
|
|
self.open_and_closes = env_trading_calendar.open_and_closes.loc[ |
97
|
|
|
self.trading_days] |
98
|
|
|
|
99
|
|
|
self.bm_symbol = bm_symbol |
100
|
|
|
if not load: |
101
|
|
|
load = load_market_data |
102
|
|
|
|
103
|
|
|
self.benchmark_returns, self.treasury_curves = \ |
104
|
|
|
load(self.trading_day, self.trading_days, self.bm_symbol) |
105
|
|
|
|
106
|
|
|
if max_date: |
107
|
|
|
tr_c = self.treasury_curves |
108
|
|
|
# Mask the treasury curves down to the current date. |
109
|
|
|
# In the case of live trading, the last date in the treasury |
110
|
|
|
# curves would be the day before the date considered to be |
111
|
|
|
# 'today'. |
112
|
|
|
self.treasury_curves = tr_c[tr_c.index <= max_date] |
113
|
|
|
|
114
|
|
|
self.exchange_tz = exchange_tz |
115
|
|
|
|
116
|
|
|
if isinstance(asset_db_path, string_types): |
117
|
|
|
asset_db_path = 'sqlite:///%s' % asset_db_path |
118
|
|
|
self.engine = engine = create_engine(asset_db_path) |
119
|
|
|
AssetDBWriterFromDictionary().init_db(engine) |
120
|
|
|
else: |
121
|
|
|
self.engine = engine = asset_db_path |
122
|
|
|
|
123
|
|
|
if engine is not None: |
124
|
|
|
self.asset_finder = AssetFinder(engine) |
125
|
|
|
else: |
126
|
|
|
self.asset_finder = None |
127
|
|
|
|
128
|
|
|
def write_data(self, |
129
|
|
|
engine=None, |
130
|
|
|
equities_data=None, |
131
|
|
|
futures_data=None, |
132
|
|
|
exchanges_data=None, |
133
|
|
|
root_symbols_data=None, |
134
|
|
|
equities_df=None, |
135
|
|
|
futures_df=None, |
136
|
|
|
exchanges_df=None, |
137
|
|
|
root_symbols_df=None, |
138
|
|
|
equities_identifiers=None, |
139
|
|
|
futures_identifiers=None, |
140
|
|
|
exchanges_identifiers=None, |
141
|
|
|
root_symbols_identifiers=None, |
142
|
|
|
allow_sid_assignment=True): |
143
|
|
|
""" Write the supplied data to the database. |
144
|
|
|
|
145
|
|
|
Parameters |
146
|
|
|
---------- |
147
|
|
|
equities_data: dict, optional |
148
|
|
|
A dictionary of equity metadata |
149
|
|
|
futures_data: dict, optional |
150
|
|
|
A dictionary of futures metadata |
151
|
|
|
exchanges_data: dict, optional |
152
|
|
|
A dictionary of exchanges metadata |
153
|
|
|
root_symbols_data: dict, optional |
154
|
|
|
A dictionary of root symbols metadata |
155
|
|
|
equities_df: pandas.DataFrame, optional |
156
|
|
|
A pandas.DataFrame of equity metadata |
157
|
|
|
futures_df: pandas.DataFrame, optional |
158
|
|
|
A pandas.DataFrame of futures metadata |
159
|
|
|
exchanges_df: pandas.DataFrame, optional |
160
|
|
|
A pandas.DataFrame of exchanges metadata |
161
|
|
|
root_symbols_df: pandas.DataFrame, optional |
162
|
|
|
A pandas.DataFrame of root symbols metadata |
163
|
|
|
equities_identifiers: list, optional |
164
|
|
|
A list of equities identifiers (sids, symbols, Assets) |
165
|
|
|
futures_identifiers: list, optional |
166
|
|
|
A list of futures identifiers (sids, symbols, Assets) |
167
|
|
|
exchanges_identifiers: list, optional |
168
|
|
|
A list of exchanges identifiers (ids or names) |
169
|
|
|
root_symbols_identifiers: list, optional |
170
|
|
|
A list of root symbols identifiers (ids or symbols) |
171
|
|
|
""" |
172
|
|
|
if engine: |
173
|
|
|
self.engine = engine |
174
|
|
|
|
175
|
|
|
# If any pandas.DataFrame data has been provided, |
176
|
|
|
# write it to the database. |
177
|
|
|
if (equities_df is not None or futures_df is not None or |
178
|
|
|
exchanges_df is not None or root_symbols_df is not None): |
179
|
|
|
self._write_data_dataframes(equities_df, futures_df, |
180
|
|
|
exchanges_df, root_symbols_df) |
181
|
|
|
|
182
|
|
|
if (equities_data is not None or futures_data is not None or |
183
|
|
|
exchanges_data is not None or root_symbols_data is not None): |
184
|
|
|
self._write_data_dicts(equities_data, futures_data, |
185
|
|
|
exchanges_data, root_symbols_data) |
186
|
|
|
|
187
|
|
|
# These could be lists or other iterables such as a pandas.Index. |
188
|
|
|
# For simplicity, don't check whether data has been provided. |
189
|
|
|
self._write_data_lists(equities_identifiers, |
190
|
|
|
futures_identifiers, |
191
|
|
|
exchanges_identifiers, |
192
|
|
|
root_symbols_identifiers, |
193
|
|
|
allow_sid_assignment=allow_sid_assignment) |
194
|
|
|
|
195
|
|
|
def _write_data_lists(self, equities=None, futures=None, exchanges=None, |
196
|
|
|
root_symbols=None, allow_sid_assignment=True): |
197
|
|
|
AssetDBWriterFromList(equities, futures, exchanges, root_symbols)\ |
198
|
|
|
.write_all(self.engine, allow_sid_assignment=allow_sid_assignment) |
199
|
|
|
|
200
|
|
|
def _write_data_dicts(self, equities=None, futures=None, exchanges=None, |
201
|
|
|
root_symbols=None): |
202
|
|
|
AssetDBWriterFromDictionary(equities, futures, exchanges, root_symbols)\ |
203
|
|
|
.write_all(self.engine) |
204
|
|
|
|
205
|
|
|
def _write_data_dataframes(self, equities=None, futures=None, |
206
|
|
|
exchanges=None, root_symbols=None): |
207
|
|
|
AssetDBWriterFromDataFrame(equities, futures, exchanges, root_symbols)\ |
208
|
|
|
.write_all(self.engine) |
209
|
|
|
|
210
|
|
|
def normalize_date(self, test_date): |
211
|
|
|
test_date = pd.Timestamp(test_date, tz='UTC') |
212
|
|
|
return pd.tseries.tools.normalize_date(test_date) |
213
|
|
|
|
214
|
|
|
def utc_dt_in_exchange(self, dt): |
215
|
|
|
return pd.Timestamp(dt).tz_convert(self.exchange_tz) |
216
|
|
|
|
217
|
|
|
def exchange_dt_in_utc(self, dt): |
218
|
|
|
return pd.Timestamp(dt, tz=self.exchange_tz).tz_convert('UTC') |
219
|
|
|
|
220
|
|
|
def is_market_hours(self, test_date): |
221
|
|
|
if not self.is_trading_day(test_date): |
222
|
|
|
return False |
223
|
|
|
|
224
|
|
|
mkt_open, mkt_close = self.get_open_and_close(test_date) |
225
|
|
|
return test_date >= mkt_open and test_date <= mkt_close |
226
|
|
|
|
227
|
|
|
def is_trading_day(self, test_date): |
228
|
|
|
dt = self.normalize_date(test_date) |
229
|
|
|
return (dt in self.trading_days) |
230
|
|
|
|
231
|
|
|
def next_trading_day(self, test_date): |
232
|
|
|
dt = self.normalize_date(test_date) |
233
|
|
|
delta = datetime.timedelta(days=1) |
234
|
|
|
|
235
|
|
|
while dt <= self.last_trading_day: |
236
|
|
|
dt += delta |
237
|
|
|
if dt in self.trading_days: |
238
|
|
|
return dt |
239
|
|
|
|
240
|
|
|
return None |
241
|
|
|
|
242
|
|
|
def previous_trading_day(self, test_date): |
243
|
|
|
dt = self.normalize_date(test_date) |
244
|
|
|
delta = datetime.timedelta(days=-1) |
245
|
|
|
|
246
|
|
|
while self.first_trading_day < dt: |
247
|
|
|
dt += delta |
248
|
|
|
if dt in self.trading_days: |
249
|
|
|
return dt |
250
|
|
|
|
251
|
|
|
return None |
252
|
|
|
|
253
|
|
|
def add_trading_days(self, n, date): |
254
|
|
|
""" |
255
|
|
|
Adds n trading days to date. If this would fall outside of the |
256
|
|
|
trading calendar, a NoFurtherDataError is raised. |
257
|
|
|
|
258
|
|
|
:Arguments: |
259
|
|
|
n : int |
260
|
|
|
The number of days to add to date, this can be positive or |
261
|
|
|
negative. |
262
|
|
|
date : datetime |
263
|
|
|
The date to add to. |
264
|
|
|
|
265
|
|
|
:Returns: |
266
|
|
|
new_date : datetime |
267
|
|
|
n trading days added to date. |
268
|
|
|
""" |
269
|
|
|
if n == 1: |
270
|
|
|
return self.next_trading_day(date) |
271
|
|
|
if n == -1: |
272
|
|
|
return self.previous_trading_day(date) |
273
|
|
|
|
274
|
|
|
idx = self.get_index(date) + n |
275
|
|
|
if idx < 0 or idx >= len(self.trading_days): |
276
|
|
|
raise NoFurtherDataError( |
277
|
|
|
msg='Cannot add %d days to %s' % (n, date) |
278
|
|
|
) |
279
|
|
|
|
280
|
|
|
return self.trading_days[idx] |
281
|
|
|
|
282
|
|
|
def days_in_range(self, start, end): |
283
|
|
|
mask = ((self.trading_days >= start) & |
284
|
|
|
(self.trading_days <= end)) |
285
|
|
|
return self.trading_days[mask] |
286
|
|
|
|
287
|
|
|
def opens_in_range(self, start, end): |
288
|
|
|
return self.open_and_closes.market_open.loc[start:end] |
289
|
|
|
|
290
|
|
|
def closes_in_range(self, start, end): |
291
|
|
|
return self.open_and_closes.market_close.loc[start:end] |
292
|
|
|
|
293
|
|
|
def minutes_for_days_in_range(self, start, end): |
294
|
|
|
""" |
295
|
|
|
Get all market minutes for the days between start and end, inclusive. |
296
|
|
|
""" |
297
|
|
|
start_date = self.normalize_date(start) |
298
|
|
|
end_date = self.normalize_date(end) |
299
|
|
|
|
300
|
|
|
all_minutes = [] |
301
|
|
|
for day in self.days_in_range(start_date, end_date): |
302
|
|
|
day_minutes = self.market_minutes_for_day(day) |
303
|
|
|
all_minutes.append(day_minutes) |
304
|
|
|
|
305
|
|
|
# Concatenate all minutes and truncate minutes before start/after end. |
306
|
|
|
return pd.DatetimeIndex( |
307
|
|
|
np.concatenate(all_minutes), copy=False, tz='UTC', |
308
|
|
|
) |
309
|
|
|
|
310
|
|
|
def next_open_and_close(self, start_date): |
311
|
|
|
""" |
312
|
|
|
Given the start_date, returns the next open and close of |
313
|
|
|
the market. |
314
|
|
|
""" |
315
|
|
|
next_open = self.next_trading_day(start_date) |
316
|
|
|
|
317
|
|
|
if next_open is None: |
318
|
|
|
raise NoFurtherDataError( |
319
|
|
|
msg=("Attempt to backtest beyond available history. " |
320
|
|
|
"Last known date: %s" % self.last_trading_day) |
321
|
|
|
) |
322
|
|
|
|
323
|
|
|
return self.get_open_and_close(next_open) |
324
|
|
|
|
325
|
|
|
def previous_open_and_close(self, start_date): |
326
|
|
|
""" |
327
|
|
|
Given the start_date, returns the previous open and close of the |
328
|
|
|
market. |
329
|
|
|
""" |
330
|
|
|
previous = self.previous_trading_day(start_date) |
331
|
|
|
|
332
|
|
|
if previous is None: |
333
|
|
|
raise NoFurtherDataError( |
334
|
|
|
msg=("Attempt to backtest beyond available history. " |
335
|
|
|
"First known date: %s" % self.first_trading_day) |
336
|
|
|
) |
337
|
|
|
return self.get_open_and_close(previous) |
338
|
|
|
|
339
|
|
|
def next_market_minute(self, start): |
340
|
|
|
""" |
341
|
|
|
Get the next market minute after @start. This is either the immediate |
342
|
|
|
next minute, the open of the same day if @start is before the market |
343
|
|
|
open on a trading day, or the open of the next market day after @start. |
344
|
|
|
""" |
345
|
|
|
if self.is_trading_day(start): |
346
|
|
|
market_open, market_close = self.get_open_and_close(start) |
347
|
|
|
# If start before market open on a trading day, return market open. |
348
|
|
|
if start < market_open: |
349
|
|
|
return market_open |
350
|
|
|
# If start is during trading hours, then get the next minute. |
351
|
|
|
elif start < market_close: |
352
|
|
|
return start + datetime.timedelta(minutes=1) |
353
|
|
|
# If start is not in a trading day, or is after the market close |
354
|
|
|
# then return the open of the *next* trading day. |
355
|
|
|
return self.next_open_and_close(start)[0] |
356
|
|
|
|
357
|
|
|
def previous_market_minute(self, start): |
358
|
|
|
""" |
359
|
|
|
Get the next market minute before @start. This is either the immediate |
360
|
|
|
previous minute, the close of the same day if @start is after the close |
361
|
|
|
on a trading day, or the close of the market day before @start. |
362
|
|
|
""" |
363
|
|
|
if self.is_trading_day(start): |
364
|
|
|
market_open, market_close = self.get_open_and_close(start) |
365
|
|
|
# If start after the market close, return market close. |
366
|
|
|
if start > market_close: |
367
|
|
|
return market_close |
368
|
|
|
# If start is during trading hours, then get previous minute. |
369
|
|
|
if start > market_open: |
370
|
|
|
return start - datetime.timedelta(minutes=1) |
371
|
|
|
# If start is not a trading day, or is before the market open |
372
|
|
|
# then return the close of the *previous* trading day. |
373
|
|
|
return self.previous_open_and_close(start)[1] |
374
|
|
|
|
375
|
|
|
def get_open_and_close(self, day): |
376
|
|
|
index = self.open_and_closes.index.get_loc(day.date()) |
377
|
|
|
todays_minutes = self.open_and_closes.values[index] |
378
|
|
|
return todays_minutes[0], todays_minutes[1] |
379
|
|
|
|
380
|
|
|
def market_minutes_for_day(self, stamp): |
381
|
|
|
market_open, market_close = self.get_open_and_close(stamp) |
382
|
|
|
return pd.date_range(market_open, market_close, freq='T') |
383
|
|
|
|
384
|
|
|
def open_close_window(self, start, count, offset=0, step=1): |
385
|
|
|
""" |
386
|
|
|
Return a DataFrame containing `count` market opens and closes, |
387
|
|
|
beginning with `start` + `offset` days and continuing `step` minutes at |
388
|
|
|
a time. |
389
|
|
|
""" |
390
|
|
|
# TODO: Correctly handle end of data. |
391
|
|
|
start_idx = self.get_index(start) + offset |
392
|
|
|
stop_idx = start_idx + (count * step) |
393
|
|
|
|
394
|
|
|
index = np.arange(start_idx, stop_idx, step) |
395
|
|
|
|
396
|
|
|
return self.open_and_closes.iloc[index] |
397
|
|
|
|
398
|
|
|
def market_minute_window(self, start, count, step=1): |
399
|
|
|
""" |
400
|
|
|
Return a DatetimeIndex containing `count` market minutes, starting with |
401
|
|
|
`start` and continuing `step` minutes at a time. |
402
|
|
|
""" |
403
|
|
|
if not self.is_market_hours(start): |
404
|
|
|
raise ValueError("market_minute_window starting at " |
405
|
|
|
"non-market time {minute}".format(minute=start)) |
406
|
|
|
|
407
|
|
|
all_minutes = [] |
408
|
|
|
|
409
|
|
|
current_day_minutes = self.market_minutes_for_day(start) |
410
|
|
|
first_minute_idx = current_day_minutes.searchsorted(start) |
411
|
|
|
minutes_in_range = current_day_minutes[first_minute_idx::step] |
412
|
|
|
|
413
|
|
|
# Build up list of lists of days' market minutes until we have count |
414
|
|
|
# minutes stored altogether. |
415
|
|
|
while True: |
416
|
|
|
|
417
|
|
|
if len(minutes_in_range) >= count: |
418
|
|
|
# Truncate off extra minutes |
419
|
|
|
minutes_in_range = minutes_in_range[:count] |
420
|
|
|
|
421
|
|
|
all_minutes.append(minutes_in_range) |
422
|
|
|
count -= len(minutes_in_range) |
423
|
|
|
if count <= 0: |
424
|
|
|
break |
425
|
|
|
|
426
|
|
|
if step > 0: |
427
|
|
|
start, _ = self.next_open_and_close(start) |
428
|
|
|
current_day_minutes = self.market_minutes_for_day(start) |
429
|
|
|
else: |
430
|
|
|
_, start = self.previous_open_and_close(start) |
431
|
|
|
current_day_minutes = self.market_minutes_for_day(start) |
432
|
|
|
|
433
|
|
|
minutes_in_range = current_day_minutes[::step] |
434
|
|
|
|
435
|
|
|
# Concatenate all the accumulated minutes. |
436
|
|
|
return pd.DatetimeIndex( |
437
|
|
|
np.concatenate(all_minutes), copy=False, tz='UTC', |
438
|
|
|
) |
439
|
|
|
|
440
|
|
|
def trading_day_distance(self, first_date, second_date): |
441
|
|
|
first_date = self.normalize_date(first_date) |
442
|
|
|
second_date = self.normalize_date(second_date) |
443
|
|
|
|
444
|
|
|
# TODO: May be able to replace the following with searchsorted. |
445
|
|
|
# Find leftmost item greater than or equal to day |
446
|
|
|
i = bisect.bisect_left(self.trading_days, first_date) |
447
|
|
|
if i == len(self.trading_days): # nothing found |
448
|
|
|
return None |
449
|
|
|
j = bisect.bisect_left(self.trading_days, second_date) |
450
|
|
|
if j == len(self.trading_days): |
451
|
|
|
return None |
452
|
|
|
|
453
|
|
|
return j - i |
454
|
|
|
|
455
|
|
|
def get_index(self, dt): |
456
|
|
|
""" |
457
|
|
|
Return the index of the given @dt, or the index of the preceding |
458
|
|
|
trading day if the given dt is not in the trading calendar. |
459
|
|
|
""" |
460
|
|
|
ndt = self.normalize_date(dt) |
461
|
|
|
if ndt in self.trading_days: |
462
|
|
|
return self.trading_days.searchsorted(ndt) |
463
|
|
|
else: |
464
|
|
|
return self.trading_days.searchsorted(ndt) - 1 |
465
|
|
|
|
466
|
|
|
|
467
|
|
|
class SimulationParameters(object): |
468
|
|
|
def __init__(self, period_start, period_end, |
469
|
|
|
capital_base=10e3, |
470
|
|
|
emission_rate='daily', |
471
|
|
|
data_frequency='daily', |
472
|
|
|
env=None): |
473
|
|
|
|
474
|
|
|
self.period_start = period_start |
475
|
|
|
self.period_end = period_end |
476
|
|
|
self.capital_base = capital_base |
477
|
|
|
|
478
|
|
|
self.emission_rate = emission_rate |
479
|
|
|
self.data_frequency = data_frequency |
480
|
|
|
|
481
|
|
|
# copied to algorithm's environment for runtime access |
482
|
|
|
self.arena = 'backtest' |
483
|
|
|
|
484
|
|
|
if env is not None: |
485
|
|
|
self.update_internal_from_env(env=env) |
486
|
|
|
|
487
|
|
|
def update_internal_from_env(self, env): |
488
|
|
|
|
489
|
|
|
assert self.period_start <= self.period_end, \ |
490
|
|
|
"Period start falls after period end." |
491
|
|
|
|
492
|
|
|
assert self.period_start <= env.last_trading_day, \ |
493
|
|
|
"Period start falls after the last known trading day." |
494
|
|
|
assert self.period_end >= env.first_trading_day, \ |
495
|
|
|
"Period end falls before the first known trading day." |
496
|
|
|
|
497
|
|
|
self.first_open = self._calculate_first_open(env) |
498
|
|
|
self.last_close = self._calculate_last_close(env) |
499
|
|
|
|
500
|
|
|
start_index = env.get_index(self.first_open) |
501
|
|
|
end_index = env.get_index(self.last_close) |
502
|
|
|
|
503
|
|
|
# take an inclusive slice of the environment's |
504
|
|
|
# trading_days. |
505
|
|
|
self.trading_days = env.trading_days[start_index:end_index + 1] |
506
|
|
|
|
507
|
|
|
def _calculate_first_open(self, env): |
508
|
|
|
""" |
509
|
|
|
Finds the first trading day on or after self.period_start. |
510
|
|
|
""" |
511
|
|
|
first_open = self.period_start |
512
|
|
|
one_day = datetime.timedelta(days=1) |
513
|
|
|
|
514
|
|
|
while not env.is_trading_day(first_open): |
515
|
|
|
first_open = first_open + one_day |
516
|
|
|
|
517
|
|
|
mkt_open, _ = env.get_open_and_close(first_open) |
518
|
|
|
return mkt_open |
519
|
|
|
|
520
|
|
|
def _calculate_last_close(self, env): |
521
|
|
|
""" |
522
|
|
|
Finds the last trading day on or before self.period_end |
523
|
|
|
""" |
524
|
|
|
last_close = self.period_end |
525
|
|
|
one_day = datetime.timedelta(days=1) |
526
|
|
|
|
527
|
|
|
while not env.is_trading_day(last_close): |
528
|
|
|
last_close = last_close - one_day |
529
|
|
|
|
530
|
|
|
_, mkt_close = env.get_open_and_close(last_close) |
531
|
|
|
return mkt_close |
532
|
|
|
|
533
|
|
|
@property |
534
|
|
|
def days_in_period(self): |
535
|
|
|
"""return the number of trading days within the period [start, end)""" |
536
|
|
|
return len(self.trading_days) |
537
|
|
|
|
538
|
|
|
def __repr__(self): |
539
|
|
|
return """ |
540
|
|
|
{class_name}( |
541
|
|
|
period_start={period_start}, |
542
|
|
|
period_end={period_end}, |
543
|
|
|
capital_base={capital_base}, |
544
|
|
|
data_frequency={data_frequency}, |
545
|
|
|
emission_rate={emission_rate}, |
546
|
|
|
first_open={first_open}, |
547
|
|
|
last_close={last_close})\ |
548
|
|
|
""".format(class_name=self.__class__.__name__, |
549
|
|
|
period_start=self.period_start, |
550
|
|
|
period_end=self.period_end, |
551
|
|
|
capital_base=self.capital_base, |
552
|
|
|
data_frequency=self.data_frequency, |
553
|
|
|
emission_rate=self.emission_rate, |
554
|
|
|
first_open=self.first_open, |
555
|
|
|
last_close=self.last_close) |
556
|
|
|
|
557
|
|
|
|
558
|
|
|
def noop_load(*args, **kwargs): |
559
|
|
|
""" |
560
|
|
|
A method that can be substituted in as the load method in a |
561
|
|
|
TradingEnvironment to prevent it from loading benchmarks. |
562
|
|
|
|
563
|
|
|
Accepts any arguments, but returns only a tuple of Nones regardless |
564
|
|
|
of input. |
565
|
|
|
""" |
566
|
|
|
return None, None |
567
|
|
|
|