|
1
|
|
|
# |
|
2
|
|
|
# Copyright 2014 Quantopian, Inc. |
|
3
|
|
|
# |
|
4
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
5
|
|
|
# you may not use this file except in compliance with the License. |
|
6
|
|
|
# You may obtain a copy of the License at |
|
7
|
|
|
# |
|
8
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
9
|
|
|
# |
|
10
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
11
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
12
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
13
|
|
|
# See the License for the specific language governing permissions and |
|
14
|
|
|
# limitations under the License. |
|
15
|
|
|
|
|
16
|
|
|
import bisect |
|
17
|
|
|
import logbook |
|
18
|
|
|
import datetime |
|
19
|
|
|
|
|
20
|
|
|
import pandas as pd |
|
21
|
|
|
import numpy as np |
|
22
|
|
|
from six import string_types |
|
23
|
|
|
from sqlalchemy import create_engine |
|
24
|
|
|
|
|
25
|
|
|
from zipline.data.loader import load_market_data |
|
26
|
|
|
from zipline.utils import tradingcalendar |
|
27
|
|
|
from zipline.assets import AssetFinder |
|
28
|
|
|
from zipline.assets.asset_writer import ( |
|
29
|
|
|
AssetDBWriterFromList, |
|
30
|
|
|
AssetDBWriterFromDictionary, |
|
31
|
|
|
AssetDBWriterFromDataFrame) |
|
32
|
|
|
from zipline.errors import ( |
|
33
|
|
|
NoFurtherDataError |
|
34
|
|
|
) |
|
35
|
|
|
|
|
36
|
|
|
|
|
37
|
|
|
log = logbook.Logger('Trading') |
|
38
|
|
|
|
|
39
|
|
|
|
|
40
|
|
|
# The financial simulations in zipline depend on information |
|
41
|
|
|
# about the benchmark index and the risk free rates of return. |
|
42
|
|
|
# The benchmark index defines the benchmark returns used in |
|
43
|
|
|
# the calculation of performance metrics such as alpha/beta. Many |
|
44
|
|
|
# components, including risk, performance, transforms, and |
|
45
|
|
|
# batch_transforms, need access to a calendar of trading days and |
|
46
|
|
|
# market hours. The TradingEnvironment maintains two time keeping |
|
47
|
|
|
# facilities: |
|
48
|
|
|
# - a DatetimeIndex of trading days for calendar calculations |
|
49
|
|
|
# - a timezone name, which should be local to the exchange |
|
50
|
|
|
# hosting the benchmark index. All dates are normalized to UTC |
|
51
|
|
|
# for serialization and storage, and the timezone is used to |
|
52
|
|
|
# ensure proper rollover through daylight savings and so on. |
|
53
|
|
|
# |
|
54
|
|
|
# User code will not normally need to use TradingEnvironment |
|
55
|
|
|
# directly. If you are extending zipline's core financial |
|
56
|
|
|
# components and need to use the environment, you must import the module and |
|
57
|
|
|
# build a new TradingEnvironment object, then pass that TradingEnvironment as |
|
58
|
|
|
# the 'env' arg to your TradingAlgorithm. |
|
59
|
|
|
|
|
60
|
|
|
class TradingEnvironment(object): |
|
61
|
|
|
|
|
62
|
|
|
# Token used as a substitute for pickling objects that contain a |
|
63
|
|
|
# reference to a TradingEnvironment |
|
64
|
|
|
PERSISTENT_TOKEN = "<TradingEnvironment>" |
|
65
|
|
|
|
|
66
|
|
|
def __init__( |
|
67
|
|
|
self, |
|
68
|
|
|
load=None, |
|
69
|
|
|
bm_symbol='^GSPC', |
|
70
|
|
|
exchange_tz="US/Eastern", |
|
71
|
|
|
max_date=None, |
|
72
|
|
|
env_trading_calendar=tradingcalendar, |
|
73
|
|
|
asset_db_path=':memory:' |
|
74
|
|
|
): |
|
75
|
|
|
""" |
|
76
|
|
|
@load is function that returns benchmark_returns and treasury_curves |
|
77
|
|
|
The treasury_curves are expected to be a DataFrame with an index of |
|
78
|
|
|
dates and columns of the curve names, e.g. '10year', '1month', etc. |
|
79
|
|
|
""" |
|
80
|
|
|
self.trading_day = env_trading_calendar.trading_day.copy() |
|
81
|
|
|
|
|
82
|
|
|
# `tc_td` is short for "trading calendar trading days" |
|
83
|
|
|
tc_td = env_trading_calendar.trading_days |
|
84
|
|
|
|
|
85
|
|
|
if max_date: |
|
86
|
|
|
self.trading_days = tc_td[tc_td <= max_date].copy() |
|
87
|
|
|
else: |
|
88
|
|
|
self.trading_days = tc_td.copy() |
|
89
|
|
|
|
|
90
|
|
|
self.first_trading_day = self.trading_days[0] |
|
91
|
|
|
self.last_trading_day = self.trading_days[-1] |
|
92
|
|
|
|
|
93
|
|
|
self.early_closes = env_trading_calendar.get_early_closes( |
|
94
|
|
|
self.first_trading_day, self.last_trading_day) |
|
95
|
|
|
|
|
96
|
|
|
self.open_and_closes = env_trading_calendar.open_and_closes.loc[ |
|
97
|
|
|
self.trading_days] |
|
98
|
|
|
|
|
99
|
|
|
self.bm_symbol = bm_symbol |
|
100
|
|
|
if not load: |
|
101
|
|
|
load = load_market_data |
|
102
|
|
|
|
|
103
|
|
|
self.benchmark_returns, self.treasury_curves = \ |
|
104
|
|
|
load(self.trading_day, self.trading_days, self.bm_symbol) |
|
105
|
|
|
|
|
106
|
|
|
if max_date: |
|
107
|
|
|
tr_c = self.treasury_curves |
|
108
|
|
|
# Mask the treasury curves down to the current date. |
|
109
|
|
|
# In the case of live trading, the last date in the treasury |
|
110
|
|
|
# curves would be the day before the date considered to be |
|
111
|
|
|
# 'today'. |
|
112
|
|
|
self.treasury_curves = tr_c[tr_c.index <= max_date] |
|
113
|
|
|
|
|
114
|
|
|
self.exchange_tz = exchange_tz |
|
115
|
|
|
|
|
116
|
|
|
if isinstance(asset_db_path, string_types): |
|
117
|
|
|
asset_db_path = 'sqlite:///%s' % asset_db_path |
|
118
|
|
|
self.engine = engine = create_engine(asset_db_path) |
|
119
|
|
|
AssetDBWriterFromDictionary().init_db(engine) |
|
120
|
|
|
else: |
|
121
|
|
|
self.engine = engine = asset_db_path |
|
122
|
|
|
|
|
123
|
|
|
if engine is not None: |
|
124
|
|
|
self.asset_finder = AssetFinder(engine) |
|
125
|
|
|
else: |
|
126
|
|
|
self.asset_finder = None |
|
127
|
|
|
|
|
128
|
|
|
def write_data(self, |
|
129
|
|
|
engine=None, |
|
130
|
|
|
equities_data=None, |
|
131
|
|
|
futures_data=None, |
|
132
|
|
|
exchanges_data=None, |
|
133
|
|
|
root_symbols_data=None, |
|
134
|
|
|
equities_df=None, |
|
135
|
|
|
futures_df=None, |
|
136
|
|
|
exchanges_df=None, |
|
137
|
|
|
root_symbols_df=None, |
|
138
|
|
|
equities_identifiers=None, |
|
139
|
|
|
futures_identifiers=None, |
|
140
|
|
|
exchanges_identifiers=None, |
|
141
|
|
|
root_symbols_identifiers=None, |
|
142
|
|
|
allow_sid_assignment=True): |
|
143
|
|
|
""" Write the supplied data to the database. |
|
144
|
|
|
|
|
145
|
|
|
Parameters |
|
146
|
|
|
---------- |
|
147
|
|
|
equities_data: dict, optional |
|
148
|
|
|
A dictionary of equity metadata |
|
149
|
|
|
futures_data: dict, optional |
|
150
|
|
|
A dictionary of futures metadata |
|
151
|
|
|
exchanges_data: dict, optional |
|
152
|
|
|
A dictionary of exchanges metadata |
|
153
|
|
|
root_symbols_data: dict, optional |
|
154
|
|
|
A dictionary of root symbols metadata |
|
155
|
|
|
equities_df: pandas.DataFrame, optional |
|
156
|
|
|
A pandas.DataFrame of equity metadata |
|
157
|
|
|
futures_df: pandas.DataFrame, optional |
|
158
|
|
|
A pandas.DataFrame of futures metadata |
|
159
|
|
|
exchanges_df: pandas.DataFrame, optional |
|
160
|
|
|
A pandas.DataFrame of exchanges metadata |
|
161
|
|
|
root_symbols_df: pandas.DataFrame, optional |
|
162
|
|
|
A pandas.DataFrame of root symbols metadata |
|
163
|
|
|
equities_identifiers: list, optional |
|
164
|
|
|
A list of equities identifiers (sids, symbols, Assets) |
|
165
|
|
|
futures_identifiers: list, optional |
|
166
|
|
|
A list of futures identifiers (sids, symbols, Assets) |
|
167
|
|
|
exchanges_identifiers: list, optional |
|
168
|
|
|
A list of exchanges identifiers (ids or names) |
|
169
|
|
|
root_symbols_identifiers: list, optional |
|
170
|
|
|
A list of root symbols identifiers (ids or symbols) |
|
171
|
|
|
""" |
|
172
|
|
|
if engine: |
|
173
|
|
|
self.engine = engine |
|
174
|
|
|
|
|
175
|
|
|
# If any pandas.DataFrame data has been provided, |
|
176
|
|
|
# write it to the database. |
|
177
|
|
|
if (equities_df is not None or futures_df is not None or |
|
178
|
|
|
exchanges_df is not None or root_symbols_df is not None): |
|
179
|
|
|
self._write_data_dataframes(equities_df, futures_df, |
|
180
|
|
|
exchanges_df, root_symbols_df) |
|
181
|
|
|
|
|
182
|
|
|
if (equities_data is not None or futures_data is not None or |
|
183
|
|
|
exchanges_data is not None or root_symbols_data is not None): |
|
184
|
|
|
self._write_data_dicts(equities_data, futures_data, |
|
185
|
|
|
exchanges_data, root_symbols_data) |
|
186
|
|
|
|
|
187
|
|
|
# These could be lists or other iterables such as a pandas.Index. |
|
188
|
|
|
# For simplicity, don't check whether data has been provided. |
|
189
|
|
|
self._write_data_lists(equities_identifiers, |
|
190
|
|
|
futures_identifiers, |
|
191
|
|
|
exchanges_identifiers, |
|
192
|
|
|
root_symbols_identifiers, |
|
193
|
|
|
allow_sid_assignment=allow_sid_assignment) |
|
194
|
|
|
|
|
195
|
|
|
def _write_data_lists(self, equities=None, futures=None, exchanges=None, |
|
196
|
|
|
root_symbols=None, allow_sid_assignment=True): |
|
197
|
|
|
AssetDBWriterFromList(equities, futures, exchanges, root_symbols)\ |
|
198
|
|
|
.write_all(self.engine, allow_sid_assignment=allow_sid_assignment) |
|
199
|
|
|
|
|
200
|
|
|
def _write_data_dicts(self, equities=None, futures=None, exchanges=None, |
|
201
|
|
|
root_symbols=None): |
|
202
|
|
|
AssetDBWriterFromDictionary(equities, futures, exchanges, root_symbols)\ |
|
203
|
|
|
.write_all(self.engine) |
|
204
|
|
|
|
|
205
|
|
|
def _write_data_dataframes(self, equities=None, futures=None, |
|
206
|
|
|
exchanges=None, root_symbols=None): |
|
207
|
|
|
AssetDBWriterFromDataFrame(equities, futures, exchanges, root_symbols)\ |
|
208
|
|
|
.write_all(self.engine) |
|
209
|
|
|
|
|
210
|
|
|
def normalize_date(self, test_date): |
|
211
|
|
|
test_date = pd.Timestamp(test_date, tz='UTC') |
|
212
|
|
|
return pd.tseries.tools.normalize_date(test_date) |
|
213
|
|
|
|
|
214
|
|
|
def utc_dt_in_exchange(self, dt): |
|
215
|
|
|
return pd.Timestamp(dt).tz_convert(self.exchange_tz) |
|
216
|
|
|
|
|
217
|
|
|
def exchange_dt_in_utc(self, dt): |
|
218
|
|
|
return pd.Timestamp(dt, tz=self.exchange_tz).tz_convert('UTC') |
|
219
|
|
|
|
|
220
|
|
|
def is_market_hours(self, test_date): |
|
221
|
|
|
if not self.is_trading_day(test_date): |
|
222
|
|
|
return False |
|
223
|
|
|
|
|
224
|
|
|
mkt_open, mkt_close = self.get_open_and_close(test_date) |
|
225
|
|
|
return test_date >= mkt_open and test_date <= mkt_close |
|
226
|
|
|
|
|
227
|
|
|
def is_trading_day(self, test_date): |
|
228
|
|
|
dt = self.normalize_date(test_date) |
|
229
|
|
|
return (dt in self.trading_days) |
|
230
|
|
|
|
|
231
|
|
|
def next_trading_day(self, test_date): |
|
232
|
|
|
dt = self.normalize_date(test_date) |
|
233
|
|
|
delta = datetime.timedelta(days=1) |
|
234
|
|
|
|
|
235
|
|
|
while dt <= self.last_trading_day: |
|
236
|
|
|
dt += delta |
|
237
|
|
|
if dt in self.trading_days: |
|
238
|
|
|
return dt |
|
239
|
|
|
|
|
240
|
|
|
return None |
|
241
|
|
|
|
|
242
|
|
|
def previous_trading_day(self, test_date): |
|
243
|
|
|
dt = self.normalize_date(test_date) |
|
244
|
|
|
delta = datetime.timedelta(days=-1) |
|
245
|
|
|
|
|
246
|
|
|
while self.first_trading_day < dt: |
|
247
|
|
|
dt += delta |
|
248
|
|
|
if dt in self.trading_days: |
|
249
|
|
|
return dt |
|
250
|
|
|
|
|
251
|
|
|
return None |
|
252
|
|
|
|
|
253
|
|
|
def add_trading_days(self, n, date): |
|
254
|
|
|
""" |
|
255
|
|
|
Adds n trading days to date. If this would fall outside of the |
|
256
|
|
|
trading calendar, a NoFurtherDataError is raised. |
|
257
|
|
|
|
|
258
|
|
|
:Arguments: |
|
259
|
|
|
n : int |
|
260
|
|
|
The number of days to add to date, this can be positive or |
|
261
|
|
|
negative. |
|
262
|
|
|
date : datetime |
|
263
|
|
|
The date to add to. |
|
264
|
|
|
|
|
265
|
|
|
:Returns: |
|
266
|
|
|
new_date : datetime |
|
267
|
|
|
n trading days added to date. |
|
268
|
|
|
""" |
|
269
|
|
|
if n == 1: |
|
270
|
|
|
return self.next_trading_day(date) |
|
271
|
|
|
if n == -1: |
|
272
|
|
|
return self.previous_trading_day(date) |
|
273
|
|
|
|
|
274
|
|
|
idx = self.get_index(date) + n |
|
275
|
|
|
if idx < 0 or idx >= len(self.trading_days): |
|
276
|
|
|
raise NoFurtherDataError( |
|
277
|
|
|
msg='Cannot add %d days to %s' % (n, date) |
|
278
|
|
|
) |
|
279
|
|
|
|
|
280
|
|
|
return self.trading_days[idx] |
|
281
|
|
|
|
|
282
|
|
|
def days_in_range(self, start, end): |
|
283
|
|
|
mask = ((self.trading_days >= start) & |
|
284
|
|
|
(self.trading_days <= end)) |
|
285
|
|
|
return self.trading_days[mask] |
|
286
|
|
|
|
|
287
|
|
|
def opens_in_range(self, start, end): |
|
288
|
|
|
return self.open_and_closes.market_open.loc[start:end] |
|
289
|
|
|
|
|
290
|
|
|
def closes_in_range(self, start, end): |
|
291
|
|
|
return self.open_and_closes.market_close.loc[start:end] |
|
292
|
|
|
|
|
293
|
|
|
def minutes_for_days_in_range(self, start, end): |
|
294
|
|
|
""" |
|
295
|
|
|
Get all market minutes for the days between start and end, inclusive. |
|
296
|
|
|
""" |
|
297
|
|
|
start_date = self.normalize_date(start) |
|
298
|
|
|
end_date = self.normalize_date(end) |
|
299
|
|
|
|
|
300
|
|
|
all_minutes = [] |
|
301
|
|
|
for day in self.days_in_range(start_date, end_date): |
|
302
|
|
|
day_minutes = self.market_minutes_for_day(day) |
|
303
|
|
|
all_minutes.append(day_minutes) |
|
304
|
|
|
|
|
305
|
|
|
# Concatenate all minutes and truncate minutes before start/after end. |
|
306
|
|
|
return pd.DatetimeIndex( |
|
307
|
|
|
np.concatenate(all_minutes), copy=False, tz='UTC', |
|
308
|
|
|
) |
|
309
|
|
|
|
|
310
|
|
|
def next_open_and_close(self, start_date): |
|
311
|
|
|
""" |
|
312
|
|
|
Given the start_date, returns the next open and close of |
|
313
|
|
|
the market. |
|
314
|
|
|
""" |
|
315
|
|
|
next_open = self.next_trading_day(start_date) |
|
316
|
|
|
|
|
317
|
|
|
if next_open is None: |
|
318
|
|
|
raise NoFurtherDataError( |
|
319
|
|
|
msg=("Attempt to backtest beyond available history. " |
|
320
|
|
|
"Last known date: %s" % self.last_trading_day) |
|
321
|
|
|
) |
|
322
|
|
|
|
|
323
|
|
|
return self.get_open_and_close(next_open) |
|
324
|
|
|
|
|
325
|
|
|
def previous_open_and_close(self, start_date): |
|
326
|
|
|
""" |
|
327
|
|
|
Given the start_date, returns the previous open and close of the |
|
328
|
|
|
market. |
|
329
|
|
|
""" |
|
330
|
|
|
previous = self.previous_trading_day(start_date) |
|
331
|
|
|
|
|
332
|
|
|
if previous is None: |
|
333
|
|
|
raise NoFurtherDataError( |
|
334
|
|
|
msg=("Attempt to backtest beyond available history. " |
|
335
|
|
|
"First known date: %s" % self.first_trading_day) |
|
336
|
|
|
) |
|
337
|
|
|
return self.get_open_and_close(previous) |
|
338
|
|
|
|
|
339
|
|
|
def next_market_minute(self, start): |
|
340
|
|
|
""" |
|
341
|
|
|
Get the next market minute after @start. This is either the immediate |
|
342
|
|
|
next minute, the open of the same day if @start is before the market |
|
343
|
|
|
open on a trading day, or the open of the next market day after @start. |
|
344
|
|
|
""" |
|
345
|
|
|
if self.is_trading_day(start): |
|
346
|
|
|
market_open, market_close = self.get_open_and_close(start) |
|
347
|
|
|
# If start before market open on a trading day, return market open. |
|
348
|
|
|
if start < market_open: |
|
349
|
|
|
return market_open |
|
350
|
|
|
# If start is during trading hours, then get the next minute. |
|
351
|
|
|
elif start < market_close: |
|
352
|
|
|
return start + datetime.timedelta(minutes=1) |
|
353
|
|
|
# If start is not in a trading day, or is after the market close |
|
354
|
|
|
# then return the open of the *next* trading day. |
|
355
|
|
|
return self.next_open_and_close(start)[0] |
|
356
|
|
|
|
|
357
|
|
|
def previous_market_minute(self, start): |
|
358
|
|
|
""" |
|
359
|
|
|
Get the next market minute before @start. This is either the immediate |
|
360
|
|
|
previous minute, the close of the same day if @start is after the close |
|
361
|
|
|
on a trading day, or the close of the market day before @start. |
|
362
|
|
|
""" |
|
363
|
|
|
if self.is_trading_day(start): |
|
364
|
|
|
market_open, market_close = self.get_open_and_close(start) |
|
365
|
|
|
# If start after the market close, return market close. |
|
366
|
|
|
if start > market_close: |
|
367
|
|
|
return market_close |
|
368
|
|
|
# If start is during trading hours, then get previous minute. |
|
369
|
|
|
if start > market_open: |
|
370
|
|
|
return start - datetime.timedelta(minutes=1) |
|
371
|
|
|
# If start is not a trading day, or is before the market open |
|
372
|
|
|
# then return the close of the *previous* trading day. |
|
373
|
|
|
return self.previous_open_and_close(start)[1] |
|
374
|
|
|
|
|
375
|
|
|
def get_open_and_close(self, day): |
|
376
|
|
|
index = self.open_and_closes.index.get_loc(day.date()) |
|
377
|
|
|
todays_minutes = self.open_and_closes.values[index] |
|
378
|
|
|
return todays_minutes[0], todays_minutes[1] |
|
379
|
|
|
|
|
380
|
|
|
def market_minutes_for_day(self, stamp): |
|
381
|
|
|
market_open, market_close = self.get_open_and_close(stamp) |
|
382
|
|
|
return pd.date_range(market_open, market_close, freq='T') |
|
383
|
|
|
|
|
384
|
|
|
def open_close_window(self, start, count, offset=0, step=1): |
|
385
|
|
|
""" |
|
386
|
|
|
Return a DataFrame containing `count` market opens and closes, |
|
387
|
|
|
beginning with `start` + `offset` days and continuing `step` minutes at |
|
388
|
|
|
a time. |
|
389
|
|
|
""" |
|
390
|
|
|
# TODO: Correctly handle end of data. |
|
391
|
|
|
start_idx = self.get_index(start) + offset |
|
392
|
|
|
stop_idx = start_idx + (count * step) |
|
393
|
|
|
|
|
394
|
|
|
index = np.arange(start_idx, stop_idx, step) |
|
395
|
|
|
|
|
396
|
|
|
return self.open_and_closes.iloc[index] |
|
397
|
|
|
|
|
398
|
|
|
def market_minute_window(self, start, count, step=1): |
|
399
|
|
|
""" |
|
400
|
|
|
Return a DatetimeIndex containing `count` market minutes, starting with |
|
401
|
|
|
`start` and continuing `step` minutes at a time. |
|
402
|
|
|
""" |
|
403
|
|
|
if not self.is_market_hours(start): |
|
404
|
|
|
raise ValueError("market_minute_window starting at " |
|
405
|
|
|
"non-market time {minute}".format(minute=start)) |
|
406
|
|
|
|
|
407
|
|
|
all_minutes = [] |
|
408
|
|
|
|
|
409
|
|
|
current_day_minutes = self.market_minutes_for_day(start) |
|
410
|
|
|
first_minute_idx = current_day_minutes.searchsorted(start) |
|
411
|
|
|
minutes_in_range = current_day_minutes[first_minute_idx::step] |
|
412
|
|
|
|
|
413
|
|
|
# Build up list of lists of days' market minutes until we have count |
|
414
|
|
|
# minutes stored altogether. |
|
415
|
|
|
while True: |
|
416
|
|
|
|
|
417
|
|
|
if len(minutes_in_range) >= count: |
|
418
|
|
|
# Truncate off extra minutes |
|
419
|
|
|
minutes_in_range = minutes_in_range[:count] |
|
420
|
|
|
|
|
421
|
|
|
all_minutes.append(minutes_in_range) |
|
422
|
|
|
count -= len(minutes_in_range) |
|
423
|
|
|
if count <= 0: |
|
424
|
|
|
break |
|
425
|
|
|
|
|
426
|
|
|
if step > 0: |
|
427
|
|
|
start, _ = self.next_open_and_close(start) |
|
428
|
|
|
current_day_minutes = self.market_minutes_for_day(start) |
|
429
|
|
|
else: |
|
430
|
|
|
_, start = self.previous_open_and_close(start) |
|
431
|
|
|
current_day_minutes = self.market_minutes_for_day(start) |
|
432
|
|
|
|
|
433
|
|
|
minutes_in_range = current_day_minutes[::step] |
|
434
|
|
|
|
|
435
|
|
|
# Concatenate all the accumulated minutes. |
|
436
|
|
|
return pd.DatetimeIndex( |
|
437
|
|
|
np.concatenate(all_minutes), copy=False, tz='UTC', |
|
438
|
|
|
) |
|
439
|
|
|
|
|
440
|
|
|
def trading_day_distance(self, first_date, second_date): |
|
441
|
|
|
first_date = self.normalize_date(first_date) |
|
442
|
|
|
second_date = self.normalize_date(second_date) |
|
443
|
|
|
|
|
444
|
|
|
# TODO: May be able to replace the following with searchsorted. |
|
445
|
|
|
# Find leftmost item greater than or equal to day |
|
446
|
|
|
i = bisect.bisect_left(self.trading_days, first_date) |
|
447
|
|
|
if i == len(self.trading_days): # nothing found |
|
448
|
|
|
return None |
|
449
|
|
|
j = bisect.bisect_left(self.trading_days, second_date) |
|
450
|
|
|
if j == len(self.trading_days): |
|
451
|
|
|
return None |
|
452
|
|
|
|
|
453
|
|
|
return j - i |
|
454
|
|
|
|
|
455
|
|
|
def get_index(self, dt): |
|
456
|
|
|
""" |
|
457
|
|
|
Return the index of the given @dt, or the index of the preceding |
|
458
|
|
|
trading day if the given dt is not in the trading calendar. |
|
459
|
|
|
""" |
|
460
|
|
|
ndt = self.normalize_date(dt) |
|
461
|
|
|
if ndt in self.trading_days: |
|
462
|
|
|
return self.trading_days.searchsorted(ndt) |
|
463
|
|
|
else: |
|
464
|
|
|
return self.trading_days.searchsorted(ndt) - 1 |
|
465
|
|
|
|
|
466
|
|
|
|
|
467
|
|
|
class SimulationParameters(object): |
|
468
|
|
|
def __init__(self, period_start, period_end, |
|
469
|
|
|
capital_base=10e3, |
|
470
|
|
|
emission_rate='daily', |
|
471
|
|
|
data_frequency='daily', |
|
472
|
|
|
env=None): |
|
473
|
|
|
|
|
474
|
|
|
self.period_start = period_start |
|
475
|
|
|
self.period_end = period_end |
|
476
|
|
|
self.capital_base = capital_base |
|
477
|
|
|
|
|
478
|
|
|
self.emission_rate = emission_rate |
|
479
|
|
|
self.data_frequency = data_frequency |
|
480
|
|
|
|
|
481
|
|
|
# copied to algorithm's environment for runtime access |
|
482
|
|
|
self.arena = 'backtest' |
|
483
|
|
|
|
|
484
|
|
|
if env is not None: |
|
485
|
|
|
self.update_internal_from_env(env=env) |
|
486
|
|
|
|
|
487
|
|
|
def update_internal_from_env(self, env): |
|
488
|
|
|
|
|
489
|
|
|
assert self.period_start <= self.period_end, \ |
|
490
|
|
|
"Period start falls after period end." |
|
491
|
|
|
|
|
492
|
|
|
assert self.period_start <= env.last_trading_day, \ |
|
493
|
|
|
"Period start falls after the last known trading day." |
|
494
|
|
|
assert self.period_end >= env.first_trading_day, \ |
|
495
|
|
|
"Period end falls before the first known trading day." |
|
496
|
|
|
|
|
497
|
|
|
self.first_open = self._calculate_first_open(env) |
|
498
|
|
|
self.last_close = self._calculate_last_close(env) |
|
499
|
|
|
|
|
500
|
|
|
start_index = env.get_index(self.first_open) |
|
501
|
|
|
end_index = env.get_index(self.last_close) |
|
502
|
|
|
|
|
503
|
|
|
# take an inclusive slice of the environment's |
|
504
|
|
|
# trading_days. |
|
505
|
|
|
self.trading_days = env.trading_days[start_index:end_index + 1] |
|
506
|
|
|
|
|
507
|
|
|
def _calculate_first_open(self, env): |
|
508
|
|
|
""" |
|
509
|
|
|
Finds the first trading day on or after self.period_start. |
|
510
|
|
|
""" |
|
511
|
|
|
first_open = self.period_start |
|
512
|
|
|
one_day = datetime.timedelta(days=1) |
|
513
|
|
|
|
|
514
|
|
|
while not env.is_trading_day(first_open): |
|
515
|
|
|
first_open = first_open + one_day |
|
516
|
|
|
|
|
517
|
|
|
mkt_open, _ = env.get_open_and_close(first_open) |
|
518
|
|
|
return mkt_open |
|
519
|
|
|
|
|
520
|
|
|
def _calculate_last_close(self, env): |
|
521
|
|
|
""" |
|
522
|
|
|
Finds the last trading day on or before self.period_end |
|
523
|
|
|
""" |
|
524
|
|
|
last_close = self.period_end |
|
525
|
|
|
one_day = datetime.timedelta(days=1) |
|
526
|
|
|
|
|
527
|
|
|
while not env.is_trading_day(last_close): |
|
528
|
|
|
last_close = last_close - one_day |
|
529
|
|
|
|
|
530
|
|
|
_, mkt_close = env.get_open_and_close(last_close) |
|
531
|
|
|
return mkt_close |
|
532
|
|
|
|
|
533
|
|
|
@property |
|
534
|
|
|
def days_in_period(self): |
|
535
|
|
|
"""return the number of trading days within the period [start, end)""" |
|
536
|
|
|
return len(self.trading_days) |
|
537
|
|
|
|
|
538
|
|
|
def __repr__(self): |
|
539
|
|
|
return """ |
|
540
|
|
|
{class_name}( |
|
541
|
|
|
period_start={period_start}, |
|
542
|
|
|
period_end={period_end}, |
|
543
|
|
|
capital_base={capital_base}, |
|
544
|
|
|
data_frequency={data_frequency}, |
|
545
|
|
|
emission_rate={emission_rate}, |
|
546
|
|
|
first_open={first_open}, |
|
547
|
|
|
last_close={last_close})\ |
|
548
|
|
|
""".format(class_name=self.__class__.__name__, |
|
549
|
|
|
period_start=self.period_start, |
|
550
|
|
|
period_end=self.period_end, |
|
551
|
|
|
capital_base=self.capital_base, |
|
552
|
|
|
data_frequency=self.data_frequency, |
|
553
|
|
|
emission_rate=self.emission_rate, |
|
554
|
|
|
first_open=self.first_open, |
|
555
|
|
|
last_close=self.last_close) |
|
556
|
|
|
|
|
557
|
|
|
|
|
558
|
|
|
def noop_load(*args, **kwargs): |
|
559
|
|
|
""" |
|
560
|
|
|
A method that can be substituted in as the load method in a |
|
561
|
|
|
TradingEnvironment to prevent it from loading benchmarks. |
|
562
|
|
|
|
|
563
|
|
|
Accepts any arguments, but returns only a tuple of Nones regardless |
|
564
|
|
|
of input. |
|
565
|
|
|
""" |
|
566
|
|
|
return None, None |
|
567
|
|
|
|