1
|
|
|
# Copyright 2015 Quantopian, Inc. |
2
|
|
|
# |
3
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
4
|
|
|
# you may not use this file except in compliance with the License. |
5
|
|
|
# You may obtain a copy of the License at |
6
|
|
|
# |
7
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
8
|
|
|
# |
9
|
|
|
# Unless required by applicable law or agreed to in writing, software |
10
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
11
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12
|
|
|
# See the License for the specific language governing permissions and |
13
|
|
|
# limitations under the License. |
14
|
|
|
|
15
|
|
|
from abc import ABCMeta |
16
|
|
|
from numbers import Integral |
17
|
|
|
from operator import itemgetter |
18
|
|
|
|
19
|
|
|
from logbook import Logger |
20
|
|
|
import numpy as np |
21
|
|
|
import pandas as pd |
22
|
|
|
from pandas import isnull |
23
|
|
|
from six import with_metaclass, string_types, viewkeys |
24
|
|
|
from six.moves import map as imap, range |
25
|
|
|
import sqlalchemy as sa |
26
|
|
|
|
27
|
|
|
from zipline.errors import ( |
28
|
|
|
EquitiesNotFound, |
29
|
|
|
FutureContractsNotFound, |
30
|
|
|
MapAssetIdentifierIndexError, |
31
|
|
|
MultipleSymbolsFound, |
32
|
|
|
RootSymbolNotFound, |
33
|
|
|
SidsNotFound, |
34
|
|
|
SymbolNotFound, |
35
|
|
|
) |
36
|
|
|
from zipline.assets import ( |
37
|
|
|
Asset, Equity, Future, |
38
|
|
|
) |
39
|
|
|
from zipline.assets.asset_writer import ( |
40
|
|
|
check_version_info, |
41
|
|
|
split_delimited_symbol, |
42
|
|
|
asset_db_table_names, |
43
|
|
|
SQLITE_MAX_VARIABLE_NUMBER, |
44
|
|
|
) |
45
|
|
|
from zipline.assets.asset_db_schema import ( |
46
|
|
|
ASSET_DB_VERSION |
47
|
|
|
) |
48
|
|
|
from zipline.utils.control_flow import invert |
49
|
|
|
|
50
|
|
|
log = Logger('assets.py') |
51
|
|
|
|
52
|
|
|
# A set of fields that need to be converted to strings before building an |
53
|
|
|
# Asset to avoid unicode fields |
54
|
|
|
_asset_str_fields = frozenset({ |
55
|
|
|
'symbol', |
56
|
|
|
'asset_name', |
57
|
|
|
'exchange', |
58
|
|
|
}) |
59
|
|
|
|
60
|
|
|
# A set of fields that need to be converted to timestamps in UTC |
61
|
|
|
_asset_timestamp_fields = frozenset({ |
62
|
|
|
'start_date', |
63
|
|
|
'end_date', |
64
|
|
|
'first_traded', |
65
|
|
|
'notice_date', |
66
|
|
|
'expiration_date', |
67
|
|
|
'auto_close_date', |
68
|
|
|
}) |
69
|
|
|
|
70
|
|
|
|
71
|
|
|
def _convert_asset_timestamp_fields(dict_): |
72
|
|
|
""" |
73
|
|
|
Takes in a dict of Asset init args and converts dates to pd.Timestamps |
74
|
|
|
""" |
75
|
|
|
for key in (_asset_timestamp_fields & viewkeys(dict_)): |
76
|
|
|
value = pd.Timestamp(dict_[key], tz='UTC') |
77
|
|
|
dict_[key] = None if isnull(value) else value |
78
|
|
|
return dict_ |
79
|
|
|
|
80
|
|
|
|
81
|
|
|
class AssetFinder(object): |
82
|
|
|
""" |
83
|
|
|
An AssetFinder is an interface to a database of Asset metadata written by |
84
|
|
|
an ``AssetDBWriter``. |
85
|
|
|
|
86
|
|
|
This class provides methods for looking up assets by unique integer id or |
87
|
|
|
by symbol. For historical reasons, we refer to these unique ids as 'sids'. |
88
|
|
|
|
89
|
|
|
Parameters |
90
|
|
|
---------- |
91
|
|
|
engine : str or SQLAlchemy.engine |
92
|
|
|
An engine with a connection to the asset database to use, or a string |
93
|
|
|
that can be parsed by SQLAlchemy as a URI. |
94
|
|
|
|
95
|
|
|
See Also |
96
|
|
|
-------- |
97
|
|
|
:class:`zipline.assets.asset_writer.AssetDBWriter` |
98
|
|
|
""" |
99
|
|
|
# Token used as a substitute for pickling objects that contain a |
100
|
|
|
# reference to an AssetFinder. |
101
|
|
|
PERSISTENT_TOKEN = "<AssetFinder>" |
102
|
|
|
|
103
|
|
|
def __init__(self, engine): |
104
|
|
|
|
105
|
|
|
self.engine = engine |
106
|
|
|
metadata = sa.MetaData(bind=engine) |
107
|
|
|
metadata.reflect(only=asset_db_table_names) |
108
|
|
|
for table_name in asset_db_table_names: |
109
|
|
|
setattr(self, table_name, metadata.tables[table_name]) |
110
|
|
|
|
111
|
|
|
# Check the version info of the db for compatibility |
112
|
|
|
check_version_info(self.version_info, ASSET_DB_VERSION) |
113
|
|
|
|
114
|
|
|
# Cache for lookup of assets by sid, the objects in the asset lookup |
115
|
|
|
# may be shared with the results from equity and future lookup caches. |
116
|
|
|
# |
117
|
|
|
# The top level cache exists to minimize lookups on the asset type |
118
|
|
|
# routing. |
119
|
|
|
# |
120
|
|
|
# The caches are read through, i.e. accessing an asset through |
121
|
|
|
# retrieve_asset will populate the cache on first retrieval. |
122
|
|
|
self._caches = (self._asset_cache, self._asset_type_cache) = {}, {} |
123
|
|
|
|
124
|
|
|
# Populated on first call to `lifetimes`. |
125
|
|
|
self._asset_lifetimes = None |
126
|
|
|
|
127
|
|
|
def _reset_caches(self): |
128
|
|
|
""" |
129
|
|
|
Reset our asset caches. |
130
|
|
|
|
131
|
|
|
You probably shouldn't call this method. |
132
|
|
|
""" |
133
|
|
|
# This method exists as a workaround for the in-place mutating behavior |
134
|
|
|
# of `TradingAlgorithm._write_and_map_id_index_to_sids`. No one else |
135
|
|
|
# should be calling this. |
136
|
|
|
for cache in self._caches: |
137
|
|
|
cache.clear() |
138
|
|
|
|
139
|
|
|
def lookup_asset_types(self, sids): |
140
|
|
|
""" |
141
|
|
|
Retrieve asset types for a list of sids. |
142
|
|
|
|
143
|
|
|
Parameters |
144
|
|
|
---------- |
145
|
|
|
sids : list[int] |
146
|
|
|
|
147
|
|
|
Returns |
148
|
|
|
------- |
149
|
|
|
types : dict[sid -> str or None] |
150
|
|
|
Asset types for the provided sids. |
151
|
|
|
""" |
152
|
|
|
found = {} |
153
|
|
|
missing = set() |
154
|
|
|
|
155
|
|
|
for sid in sids: |
156
|
|
|
try: |
157
|
|
|
found[sid] = self._asset_type_cache[sid] |
158
|
|
|
except KeyError: |
159
|
|
|
missing.add(sid) |
160
|
|
|
|
161
|
|
|
if not missing: |
162
|
|
|
return found |
163
|
|
|
|
164
|
|
|
router_cols = self.asset_router.c |
165
|
|
|
|
166
|
|
|
for assets in self._group_into_chunks(missing): |
167
|
|
|
query = sa.select((router_cols.sid, router_cols.asset_type)).where( |
168
|
|
|
self.asset_router.c.sid.in_(map(int, assets)) |
169
|
|
|
) |
170
|
|
|
for sid, type_ in query.execute().fetchall(): |
171
|
|
|
missing.remove(sid) |
172
|
|
|
found[sid] = self._asset_type_cache[sid] = type_ |
173
|
|
|
|
174
|
|
|
for sid in missing: |
175
|
|
|
found[sid] = self._asset_type_cache[sid] = None |
176
|
|
|
|
177
|
|
|
return found |
178
|
|
|
|
179
|
|
|
@staticmethod |
180
|
|
|
def _group_into_chunks(items, chunk_size=SQLITE_MAX_VARIABLE_NUMBER): |
181
|
|
|
items = list(items) |
182
|
|
|
return [items[x:x+chunk_size] |
183
|
|
|
for x in range(0, len(items), chunk_size)] |
184
|
|
|
|
185
|
|
|
def group_by_type(self, sids): |
186
|
|
|
""" |
187
|
|
|
Group a list of sids by asset type. |
188
|
|
|
|
189
|
|
|
Parameters |
190
|
|
|
---------- |
191
|
|
|
sids : list[int] |
192
|
|
|
|
193
|
|
|
Returns |
194
|
|
|
------- |
195
|
|
|
types : dict[str or None -> list[int]] |
196
|
|
|
A dict mapping unique asset types to lists of sids drawn from sids. |
197
|
|
|
If we fail to look up an asset, we assign it a key of None. |
198
|
|
|
""" |
199
|
|
|
return invert(self.lookup_asset_types(sids)) |
200
|
|
|
|
201
|
|
|
def retrieve_asset(self, sid, default_none=False): |
202
|
|
|
""" |
203
|
|
|
Retrieve the Asset for a given sid. |
204
|
|
|
""" |
205
|
|
|
return self.retrieve_all((sid,), default_none=default_none)[0] |
206
|
|
|
|
207
|
|
|
def retrieve_all(self, sids, default_none=False): |
208
|
|
|
""" |
209
|
|
|
Retrieve all assets in `sids`. |
210
|
|
|
|
211
|
|
|
Parameters |
212
|
|
|
---------- |
213
|
|
|
sids : interable of int |
214
|
|
|
Assets to retrieve. |
215
|
|
|
default_none : bool |
216
|
|
|
If True, return None for failed lookups. |
217
|
|
|
If False, raise `SidsNotFound`. |
218
|
|
|
|
219
|
|
|
Returns |
220
|
|
|
------- |
221
|
|
|
assets : list[int or None] |
222
|
|
|
A list of the same length as `sids` containing Assets (or Nones) |
223
|
|
|
corresponding to the requested sids. |
224
|
|
|
|
225
|
|
|
Raises |
226
|
|
|
------ |
227
|
|
|
SidsNotFound |
228
|
|
|
When a requested sid is not found and default_none=False. |
229
|
|
|
""" |
230
|
|
|
hits, missing, failures = {}, set(), [] |
231
|
|
|
for sid in sids: |
232
|
|
|
try: |
233
|
|
|
asset = self._asset_cache[sid] |
234
|
|
|
if not default_none and asset is None: |
235
|
|
|
# Bail early if we've already cached that we don't know |
236
|
|
|
# about an asset. |
237
|
|
|
raise SidsNotFound(sids=[sid]) |
238
|
|
|
hits[sid] = asset |
239
|
|
|
except KeyError: |
240
|
|
|
missing.add(sid) |
241
|
|
|
|
242
|
|
|
# All requests were cache hits. Return requested sids in order. |
243
|
|
|
if not missing: |
244
|
|
|
return [hits[sid] for sid in sids] |
245
|
|
|
|
246
|
|
|
update_hits = hits.update |
247
|
|
|
|
248
|
|
|
# Look up cache misses by type. |
249
|
|
|
type_to_assets = self.group_by_type(missing) |
250
|
|
|
|
251
|
|
|
# Handle failures |
252
|
|
|
failures = {failure: None for failure in type_to_assets.pop(None, ())} |
253
|
|
|
update_hits(failures) |
254
|
|
|
self._asset_cache.update(failures) |
255
|
|
|
|
256
|
|
|
if failures and not default_none: |
257
|
|
|
raise SidsNotFound(sids=list(failures)) |
258
|
|
|
|
259
|
|
|
# We don't update the asset cache here because it should already be |
260
|
|
|
# updated by `self.retrieve_equities`. |
261
|
|
|
update_hits(self.retrieve_equities(type_to_assets.pop('equity', ()))) |
262
|
|
|
update_hits( |
263
|
|
|
self.retrieve_futures_contracts(type_to_assets.pop('future', ())) |
264
|
|
|
) |
265
|
|
|
|
266
|
|
|
# We shouldn't know about any other asset types. |
267
|
|
|
if type_to_assets: |
268
|
|
|
raise AssertionError( |
269
|
|
|
"Found asset types: %s" % list(type_to_assets.keys()) |
270
|
|
|
) |
271
|
|
|
|
272
|
|
|
return [hits[sid] for sid in sids] |
273
|
|
|
|
274
|
|
|
def retrieve_equities(self, sids): |
275
|
|
|
""" |
276
|
|
|
Retrieve Equity objects for a list of sids. |
277
|
|
|
|
278
|
|
|
Users generally shouldn't need to this method (instead, they should |
279
|
|
|
prefer the more general/friendly `retrieve_assets`), but it has a |
280
|
|
|
documented interface and tests because it's used upstream. |
281
|
|
|
|
282
|
|
|
Parameters |
283
|
|
|
---------- |
284
|
|
|
sids : iterable[int] |
285
|
|
|
|
286
|
|
|
Returns |
287
|
|
|
------- |
288
|
|
|
equities : dict[int -> Equity] |
289
|
|
|
|
290
|
|
|
Raises |
291
|
|
|
------ |
292
|
|
|
EquitiesNotFound |
293
|
|
|
When any requested asset isn't found. |
294
|
|
|
""" |
295
|
|
|
return self._retrieve_assets(sids, self.equities, Equity) |
296
|
|
|
|
297
|
|
|
def _retrieve_equity(self, sid): |
298
|
|
|
return self.retrieve_equities((sid,))[sid] |
299
|
|
|
|
300
|
|
|
def retrieve_futures_contracts(self, sids): |
301
|
|
|
""" |
302
|
|
|
Retrieve Future objects for an iterable of sids. |
303
|
|
|
|
304
|
|
|
Users generally shouldn't need to this method (instead, they should |
305
|
|
|
prefer the more general/friendly `retrieve_assets`), but it has a |
306
|
|
|
documented interface and tests because it's used upstream. |
307
|
|
|
|
308
|
|
|
Parameters |
309
|
|
|
---------- |
310
|
|
|
sids : iterable[int] |
311
|
|
|
|
312
|
|
|
Returns |
313
|
|
|
------- |
314
|
|
|
equities : dict[int -> Equity] |
315
|
|
|
|
316
|
|
|
Raises |
317
|
|
|
------ |
318
|
|
|
EquitiesNotFound |
319
|
|
|
When any requested asset isn't found. |
320
|
|
|
""" |
321
|
|
|
return self._retrieve_assets(sids, self.futures_contracts, Future) |
322
|
|
|
|
323
|
|
|
@staticmethod |
324
|
|
|
def _select_assets_by_sid(asset_tbl, sids): |
325
|
|
|
return sa.select([asset_tbl]).where( |
326
|
|
|
asset_tbl.c.sid.in_(map(int, sids)) |
327
|
|
|
) |
328
|
|
|
|
329
|
|
|
@staticmethod |
330
|
|
|
def _select_asset_by_symbol(asset_tbl, symbol): |
331
|
|
|
return sa.select([asset_tbl]).where(asset_tbl.c.symbol == symbol) |
332
|
|
|
|
333
|
|
|
def _retrieve_assets(self, sids, asset_tbl, asset_type): |
334
|
|
|
""" |
335
|
|
|
Internal function for loading assets from a table. |
336
|
|
|
|
337
|
|
|
This should be the only method of `AssetFinder` that writes Assets into |
338
|
|
|
self._asset_cache. |
339
|
|
|
|
340
|
|
|
Parameters |
341
|
|
|
--------- |
342
|
|
|
sids : iterable of int |
343
|
|
|
Asset ids to look up. |
344
|
|
|
asset_tbl : sqlalchemy.Table |
345
|
|
|
Table from which to query assets. |
346
|
|
|
asset_type : type |
347
|
|
|
Type of asset to be constructed. |
348
|
|
|
|
349
|
|
|
Returns |
350
|
|
|
------- |
351
|
|
|
assets : dict[int -> Asset] |
352
|
|
|
Dict mapping requested sids to the retrieved assets. |
353
|
|
|
""" |
354
|
|
|
# Fastpath for empty request. |
355
|
|
|
if not sids: |
356
|
|
|
return {} |
357
|
|
|
|
358
|
|
|
cache = self._asset_cache |
359
|
|
|
hits = {} |
360
|
|
|
|
361
|
|
|
for assets in self._group_into_chunks(sids): |
362
|
|
|
# Load misses from the db. |
363
|
|
|
query = self._select_assets_by_sid(asset_tbl, assets) |
364
|
|
|
|
365
|
|
|
for row in imap(dict, query.execute().fetchall()): |
366
|
|
|
asset = asset_type(**_convert_asset_timestamp_fields(row)) |
367
|
|
|
sid = asset.sid |
368
|
|
|
hits[sid] = cache[sid] = asset |
369
|
|
|
|
370
|
|
|
# If we get here, it means something in our code thought that a |
371
|
|
|
# particular sid was an equity/future and called this function with a |
372
|
|
|
# concrete type, but we couldn't actually resolve the asset. This is |
373
|
|
|
# an error in our code, not a user-input error. |
374
|
|
|
misses = tuple(set(sids) - viewkeys(hits)) |
375
|
|
|
if misses: |
376
|
|
|
if asset_type == Equity: |
377
|
|
|
raise EquitiesNotFound(sids=misses) |
378
|
|
|
else: |
379
|
|
|
raise FutureContractsNotFound(sids=misses) |
380
|
|
|
return hits |
381
|
|
|
|
382
|
|
|
def _get_fuzzy_candidates(self, fuzzy_symbol): |
383
|
|
|
candidates = sa.select( |
384
|
|
|
(self.equities.c.sid,) |
385
|
|
|
).where(self.equities.c.fuzzy_symbol == fuzzy_symbol).order_by( |
386
|
|
|
self.equities.c.start_date.desc(), |
387
|
|
|
self.equities.c.end_date.desc() |
388
|
|
|
).execute().fetchall() |
389
|
|
|
return candidates |
390
|
|
|
|
391
|
|
|
def _get_fuzzy_candidates_in_range(self, fuzzy_symbol, ad_value): |
392
|
|
|
candidates = sa.select( |
393
|
|
|
(self.equities.c.sid,) |
394
|
|
|
).where( |
395
|
|
|
sa.and_( |
396
|
|
|
self.equities.c.fuzzy_symbol == fuzzy_symbol, |
397
|
|
|
self.equities.c.start_date <= ad_value, |
398
|
|
|
self.equities.c.end_date >= ad_value |
399
|
|
|
) |
400
|
|
|
).order_by( |
401
|
|
|
self.equities.c.start_date.desc(), |
402
|
|
|
self.equities.c.end_date.desc(), |
403
|
|
|
).execute().fetchall() |
404
|
|
|
return candidates |
405
|
|
|
|
406
|
|
|
def _get_split_candidates_in_range(self, |
407
|
|
|
company_symbol, |
408
|
|
|
share_class_symbol, |
409
|
|
|
ad_value): |
410
|
|
|
candidates = sa.select( |
411
|
|
|
(self.equities.c.sid,) |
412
|
|
|
).where( |
413
|
|
|
sa.and_( |
414
|
|
|
self.equities.c.company_symbol == company_symbol, |
415
|
|
|
self.equities.c.share_class_symbol == share_class_symbol, |
416
|
|
|
self.equities.c.start_date <= ad_value, |
417
|
|
|
self.equities.c.end_date >= ad_value |
418
|
|
|
) |
419
|
|
|
).order_by( |
420
|
|
|
self.equities.c.start_date.desc(), |
421
|
|
|
self.equities.c.end_date.desc(), |
422
|
|
|
).execute().fetchall() |
423
|
|
|
return candidates |
424
|
|
|
|
425
|
|
|
def _get_split_candidates(self, company_symbol, share_class_symbol): |
426
|
|
|
candidates = sa.select( |
427
|
|
|
(self.equities.c.sid,) |
428
|
|
|
).where( |
429
|
|
|
sa.and_( |
430
|
|
|
self.equities.c.company_symbol == company_symbol, |
431
|
|
|
self.equities.c.share_class_symbol == share_class_symbol |
432
|
|
|
) |
433
|
|
|
).order_by( |
434
|
|
|
self.equities.c.start_date.desc(), |
435
|
|
|
self.equities.c.end_date.desc(), |
436
|
|
|
).execute().fetchall() |
437
|
|
|
return candidates |
438
|
|
|
|
439
|
|
|
def _resolve_no_matching_candidates(self, |
440
|
|
|
company_symbol, |
441
|
|
|
share_class_symbol, |
442
|
|
|
ad_value): |
443
|
|
|
candidates = sa.select((self.equities.c.sid,)).where( |
444
|
|
|
sa.and_( |
445
|
|
|
self.equities.c.company_symbol == company_symbol, |
446
|
|
|
self.equities.c.share_class_symbol == |
447
|
|
|
share_class_symbol, |
448
|
|
|
self.equities.c.start_date <= ad_value), |
449
|
|
|
).order_by( |
450
|
|
|
self.equities.c.end_date.desc(), |
451
|
|
|
).execute().fetchall() |
452
|
|
|
return candidates |
453
|
|
|
|
454
|
|
|
def _get_best_candidate(self, candidates): |
455
|
|
|
return self._retrieve_equity(candidates[0]['sid']) |
456
|
|
|
|
457
|
|
|
def _get_equities_from_candidates(self, candidates): |
458
|
|
|
sids = map(itemgetter('sid'), candidates) |
459
|
|
|
results = self.retrieve_equities(sids) |
460
|
|
|
return [results[sid] for sid in sids] |
461
|
|
|
|
462
|
|
|
def lookup_symbol(self, symbol, as_of_date, fuzzy=False): |
463
|
|
|
""" |
464
|
|
|
Return matching Equity of name symbol in database. |
465
|
|
|
|
466
|
|
|
If multiple Equities are found and as_of_date is not set, |
467
|
|
|
raises MultipleSymbolsFound. |
468
|
|
|
|
469
|
|
|
If no Equity was active at as_of_date raises SymbolNotFound. |
470
|
|
|
""" |
471
|
|
|
company_symbol, share_class_symbol, fuzzy_symbol = \ |
472
|
|
|
split_delimited_symbol(symbol) |
473
|
|
|
if as_of_date: |
474
|
|
|
# Format inputs |
475
|
|
|
as_of_date = pd.Timestamp(as_of_date).normalize() |
476
|
|
|
ad_value = as_of_date.value |
477
|
|
|
|
478
|
|
|
if fuzzy: |
479
|
|
|
# Search for a single exact match on the fuzzy column |
480
|
|
|
candidates = self._get_fuzzy_candidates_in_range(fuzzy_symbol, |
481
|
|
|
ad_value) |
482
|
|
|
|
483
|
|
|
# If exactly one SID exists for fuzzy_symbol, return that sid |
484
|
|
|
if len(candidates) == 1: |
485
|
|
|
return self._get_best_candidate(candidates) |
486
|
|
|
|
487
|
|
|
# Search for exact matches of the split-up company_symbol and |
488
|
|
|
# share_class_symbol |
489
|
|
|
candidates = self._get_split_candidates_in_range( |
490
|
|
|
company_symbol, |
491
|
|
|
share_class_symbol, |
492
|
|
|
ad_value |
493
|
|
|
) |
494
|
|
|
|
495
|
|
|
# If exactly one SID exists for symbol, return that symbol |
496
|
|
|
# If multiple SIDs exist for symbol, return latest start_date with |
497
|
|
|
# end_date as a tie-breaker |
498
|
|
|
if candidates: |
499
|
|
|
return self._get_best_candidate(candidates) |
500
|
|
|
|
501
|
|
|
# If no SID exists for symbol, return SID with the |
502
|
|
|
# highest-but-not-over end_date |
503
|
|
|
elif not candidates: |
504
|
|
|
candidates = self._resolve_no_matching_candidates( |
505
|
|
|
company_symbol, |
506
|
|
|
share_class_symbol, |
507
|
|
|
ad_value |
508
|
|
|
) |
509
|
|
|
if candidates: |
510
|
|
|
return self._get_best_candidate(candidates) |
511
|
|
|
|
512
|
|
|
raise SymbolNotFound(symbol=symbol) |
513
|
|
|
|
514
|
|
|
else: |
515
|
|
|
# If this is a fuzzy look-up, check if there is exactly one match |
516
|
|
|
# for the fuzzy symbol |
517
|
|
|
if fuzzy: |
518
|
|
|
candidates = self._get_fuzzy_candidates(fuzzy_symbol) |
519
|
|
|
if len(candidates) == 1: |
520
|
|
|
return self._get_best_candidate(candidates) |
521
|
|
|
|
522
|
|
|
candidates = self._get_split_candidates(company_symbol, |
523
|
|
|
share_class_symbol) |
524
|
|
|
if len(candidates) == 1: |
525
|
|
|
return self._get_best_candidate(candidates) |
526
|
|
|
elif not candidates: |
527
|
|
|
raise SymbolNotFound(symbol=symbol) |
528
|
|
|
else: |
529
|
|
|
raise MultipleSymbolsFound( |
530
|
|
|
symbol=symbol, |
531
|
|
|
options=self._get_equities_from_candidates(candidates) |
532
|
|
|
) |
533
|
|
|
|
534
|
|
|
def lookup_future_symbol(self, symbol): |
535
|
|
|
""" Return the Future object for a given symbol. |
536
|
|
|
|
537
|
|
|
Parameters |
538
|
|
|
---------- |
539
|
|
|
symbol : str |
540
|
|
|
The symbol of the desired contract. |
541
|
|
|
|
542
|
|
|
Returns |
543
|
|
|
------- |
544
|
|
|
Future |
545
|
|
|
A Future object. |
546
|
|
|
|
547
|
|
|
Raises |
548
|
|
|
------ |
549
|
|
|
SymbolNotFound |
550
|
|
|
Raised when no contract named 'symbol' is found. |
551
|
|
|
|
552
|
|
|
""" |
553
|
|
|
|
554
|
|
|
data = self._select_asset_by_symbol(self.futures_contracts, symbol)\ |
555
|
|
|
.execute().fetchone() |
556
|
|
|
|
557
|
|
|
# If no data found, raise an exception |
558
|
|
|
if not data: |
559
|
|
|
raise SymbolNotFound(symbol=symbol) |
560
|
|
|
return self.retrieve_asset(data['sid']) |
561
|
|
|
|
562
|
|
|
def lookup_future_chain(self, root_symbol, as_of_date): |
563
|
|
|
""" Return the futures chain for a given root symbol. |
564
|
|
|
|
565
|
|
|
Parameters |
566
|
|
|
---------- |
567
|
|
|
root_symbol : str |
568
|
|
|
Root symbol of the desired future. |
569
|
|
|
|
570
|
|
|
as_of_date : pd.Timestamp or pd.NaT |
571
|
|
|
Date at which the chain determination is rooted. I.e. the |
572
|
|
|
existing contract whose notice date/expiration date is first |
573
|
|
|
after this date is the primary contract, etc. If NaT is |
574
|
|
|
given, the chain is unbounded, and all contracts for this |
575
|
|
|
root symbol are returned. |
576
|
|
|
|
577
|
|
|
Returns |
578
|
|
|
------- |
579
|
|
|
list |
580
|
|
|
A list of Future objects, the chain for the given |
581
|
|
|
parameters. |
582
|
|
|
|
583
|
|
|
Raises |
584
|
|
|
------ |
585
|
|
|
RootSymbolNotFound |
586
|
|
|
Raised when a future chain could not be found for the given |
587
|
|
|
root symbol. |
588
|
|
|
""" |
589
|
|
|
|
590
|
|
|
fc_cols = self.futures_contracts.c |
591
|
|
|
|
592
|
|
|
if as_of_date is pd.NaT: |
593
|
|
|
# If the as_of_date is NaT, get all contracts for this |
594
|
|
|
# root symbol. |
595
|
|
|
sids = list(map( |
596
|
|
|
itemgetter('sid'), |
597
|
|
|
sa.select((fc_cols.sid,)).where( |
598
|
|
|
(fc_cols.root_symbol == root_symbol), |
599
|
|
|
).order_by( |
600
|
|
|
fc_cols.notice_date.asc(), |
601
|
|
|
).execute().fetchall())) |
602
|
|
|
else: |
603
|
|
|
as_of_date = as_of_date.value |
604
|
|
|
|
605
|
|
|
sids = list(map( |
606
|
|
|
itemgetter('sid'), |
607
|
|
|
sa.select((fc_cols.sid,)).where( |
608
|
|
|
(fc_cols.root_symbol == root_symbol) & |
609
|
|
|
|
610
|
|
|
# Filter to contracts that are still valid. If both |
611
|
|
|
# exist, use the one that comes first in time (i.e. |
612
|
|
|
# the lower value). If either notice_date or |
613
|
|
|
# expiration_date is NaT, use the other. If both are |
614
|
|
|
# NaT, the contract cannot be included in any chain. |
615
|
|
|
sa.case( |
616
|
|
|
[ |
617
|
|
|
( |
618
|
|
|
fc_cols.notice_date == pd.NaT.value, |
619
|
|
|
fc_cols.expiration_date >= as_of_date |
620
|
|
|
), |
621
|
|
|
( |
622
|
|
|
fc_cols.expiration_date == pd.NaT.value, |
623
|
|
|
fc_cols.notice_date >= as_of_date |
624
|
|
|
) |
625
|
|
|
], |
626
|
|
|
else_=( |
627
|
|
|
sa.func.min( |
628
|
|
|
fc_cols.notice_date, |
629
|
|
|
fc_cols.expiration_date |
630
|
|
|
) >= as_of_date |
631
|
|
|
) |
632
|
|
|
) |
633
|
|
|
).order_by( |
634
|
|
|
# Sort using expiration_date if valid. If it's NaT, |
635
|
|
|
# use notice_date instead. |
636
|
|
|
sa.case( |
637
|
|
|
[ |
638
|
|
|
( |
639
|
|
|
fc_cols.expiration_date == pd.NaT.value, |
640
|
|
|
fc_cols.notice_date |
641
|
|
|
) |
642
|
|
|
], |
643
|
|
|
else_=fc_cols.expiration_date |
644
|
|
|
).asc() |
645
|
|
|
).execute().fetchall() |
646
|
|
|
)) |
647
|
|
|
|
648
|
|
|
if not sids: |
649
|
|
|
# Check if root symbol exists. |
650
|
|
|
count = sa.select((sa.func.count(fc_cols.sid),)).where( |
651
|
|
|
fc_cols.root_symbol == root_symbol, |
652
|
|
|
).scalar() |
653
|
|
|
if count == 0: |
654
|
|
|
raise RootSymbolNotFound(root_symbol=root_symbol) |
655
|
|
|
|
656
|
|
|
contracts = self.retrieve_futures_contracts(sids) |
657
|
|
|
return [contracts[sid] for sid in sids] |
658
|
|
|
|
659
|
|
|
@property |
660
|
|
|
def sids(self): |
661
|
|
|
return tuple(map( |
662
|
|
|
itemgetter('sid'), |
663
|
|
|
sa.select((self.asset_router.c.sid,)).execute().fetchall(), |
664
|
|
|
)) |
665
|
|
|
|
666
|
|
|
def _lookup_generic_scalar(self, |
667
|
|
|
asset_convertible, |
668
|
|
|
as_of_date, |
669
|
|
|
matches, |
670
|
|
|
missing): |
671
|
|
|
""" |
672
|
|
|
Convert asset_convertible to an asset. |
673
|
|
|
|
674
|
|
|
On success, append to matches. |
675
|
|
|
On failure, append to missing. |
676
|
|
|
""" |
677
|
|
|
if isinstance(asset_convertible, Asset): |
678
|
|
|
matches.append(asset_convertible) |
679
|
|
|
|
680
|
|
|
elif isinstance(asset_convertible, Integral): |
681
|
|
|
try: |
682
|
|
|
result = self.retrieve_asset(int(asset_convertible)) |
683
|
|
|
except SidsNotFound: |
684
|
|
|
missing.append(asset_convertible) |
685
|
|
|
return None |
686
|
|
|
matches.append(result) |
687
|
|
|
|
688
|
|
|
elif isinstance(asset_convertible, string_types): |
689
|
|
|
try: |
690
|
|
|
matches.append( |
691
|
|
|
self.lookup_symbol(asset_convertible, as_of_date) |
692
|
|
|
) |
693
|
|
|
except SymbolNotFound: |
694
|
|
|
missing.append(asset_convertible) |
695
|
|
|
return None |
696
|
|
|
else: |
697
|
|
|
raise NotAssetConvertible( |
698
|
|
|
"Input was %s, not AssetConvertible." |
699
|
|
|
% asset_convertible |
700
|
|
|
) |
701
|
|
|
|
702
|
|
|
def lookup_generic(self, |
703
|
|
|
asset_convertible_or_iterable, |
704
|
|
|
as_of_date): |
705
|
|
|
""" |
706
|
|
|
Convert a AssetConvertible or iterable of AssetConvertibles into |
707
|
|
|
a list of Asset objects. |
708
|
|
|
|
709
|
|
|
This method exists primarily as a convenience for implementing |
710
|
|
|
user-facing APIs that can handle multiple kinds of input. It should |
711
|
|
|
not be used for internal code where we already know the expected types |
712
|
|
|
of our inputs. |
713
|
|
|
|
714
|
|
|
Returns a pair of objects, the first of which is the result of the |
715
|
|
|
conversion, and the second of which is a list containing any values |
716
|
|
|
that couldn't be resolved. |
717
|
|
|
""" |
718
|
|
|
matches = [] |
719
|
|
|
missing = [] |
720
|
|
|
|
721
|
|
|
# Interpret input as scalar. |
722
|
|
|
if isinstance(asset_convertible_or_iterable, AssetConvertible): |
723
|
|
|
self._lookup_generic_scalar( |
724
|
|
|
asset_convertible=asset_convertible_or_iterable, |
725
|
|
|
as_of_date=as_of_date, |
726
|
|
|
matches=matches, |
727
|
|
|
missing=missing, |
728
|
|
|
) |
729
|
|
|
try: |
730
|
|
|
return matches[0], missing |
731
|
|
|
except IndexError: |
732
|
|
|
if hasattr(asset_convertible_or_iterable, '__int__'): |
733
|
|
|
raise SidsNotFound(sids=[asset_convertible_or_iterable]) |
734
|
|
|
else: |
735
|
|
|
raise SymbolNotFound(symbol=asset_convertible_or_iterable) |
736
|
|
|
|
737
|
|
|
# Interpret input as iterable. |
738
|
|
|
try: |
739
|
|
|
iterator = iter(asset_convertible_or_iterable) |
740
|
|
|
except TypeError: |
741
|
|
|
raise NotAssetConvertible( |
742
|
|
|
"Input was not a AssetConvertible " |
743
|
|
|
"or iterable of AssetConvertible." |
744
|
|
|
) |
745
|
|
|
|
746
|
|
|
for obj in iterator: |
747
|
|
|
self._lookup_generic_scalar(obj, as_of_date, matches, missing) |
748
|
|
|
return matches, missing |
749
|
|
|
|
750
|
|
|
def map_identifier_index_to_sids(self, index, as_of_date): |
751
|
|
|
""" |
752
|
|
|
This method is for use in sanitizing a user's DataFrame or Panel |
753
|
|
|
inputs. |
754
|
|
|
|
755
|
|
|
Takes the given index of identifiers, checks their types, builds assets |
756
|
|
|
if necessary, and returns a list of the sids that correspond to the |
757
|
|
|
input index. |
758
|
|
|
|
759
|
|
|
Parameters |
760
|
|
|
---------- |
761
|
|
|
index : Iterable |
762
|
|
|
An iterable containing ints, strings, or Assets |
763
|
|
|
as_of_date : pandas.Timestamp |
764
|
|
|
A date to be used to resolve any dual-mapped symbols |
765
|
|
|
|
766
|
|
|
Returns |
767
|
|
|
------- |
768
|
|
|
List |
769
|
|
|
A list of integer sids corresponding to the input index |
770
|
|
|
""" |
771
|
|
|
# This method assumes that the type of the objects in the index is |
772
|
|
|
# consistent and can, therefore, be taken from the first identifier |
773
|
|
|
first_identifier = index[0] |
774
|
|
|
|
775
|
|
|
# Ensure that input is AssetConvertible (integer, string, or Asset) |
776
|
|
|
if not isinstance(first_identifier, AssetConvertible): |
777
|
|
|
raise MapAssetIdentifierIndexError(obj=first_identifier) |
778
|
|
|
|
779
|
|
|
# If sids are provided, no mapping is necessary |
780
|
|
|
if isinstance(first_identifier, Integral): |
781
|
|
|
return index |
782
|
|
|
|
783
|
|
|
# Look up all Assets for mapping |
784
|
|
|
matches = [] |
785
|
|
|
missing = [] |
786
|
|
|
for identifier in index: |
787
|
|
|
self._lookup_generic_scalar(identifier, as_of_date, |
788
|
|
|
matches, missing) |
789
|
|
|
|
790
|
|
|
if missing: |
791
|
|
|
raise ValueError("Missing assets for identifiers: %s" % missing) |
792
|
|
|
|
793
|
|
|
# Return a list of the sids of the found assets |
794
|
|
|
return [asset.sid for asset in matches] |
795
|
|
|
|
796
|
|
|
def _compute_asset_lifetimes(self): |
797
|
|
|
""" |
798
|
|
|
Compute and cache a recarry of asset lifetimes. |
799
|
|
|
""" |
800
|
|
|
equities_cols = self.equities.c |
801
|
|
|
buf = np.array( |
802
|
|
|
tuple( |
803
|
|
|
sa.select(( |
804
|
|
|
equities_cols.sid, |
805
|
|
|
equities_cols.start_date, |
806
|
|
|
equities_cols.end_date, |
807
|
|
|
)).execute(), |
808
|
|
|
), dtype='<f8', # use doubles so we get NaNs |
809
|
|
|
) |
810
|
|
|
lifetimes = np.recarray( |
811
|
|
|
buf=buf, |
812
|
|
|
shape=(len(buf),), |
813
|
|
|
dtype=[ |
814
|
|
|
('sid', '<f8'), |
815
|
|
|
('start', '<f8'), |
816
|
|
|
('end', '<f8') |
817
|
|
|
], |
818
|
|
|
) |
819
|
|
|
start = lifetimes.start |
820
|
|
|
end = lifetimes.end |
821
|
|
|
start[np.isnan(start)] = 0 # convert missing starts to 0 |
822
|
|
|
end[np.isnan(end)] = np.iinfo(int).max # convert missing end to INTMAX |
823
|
|
|
# Cast the results back down to int. |
824
|
|
|
return lifetimes.astype([ |
825
|
|
|
('sid', '<i8'), |
826
|
|
|
('start', '<i8'), |
827
|
|
|
('end', '<i8'), |
828
|
|
|
]) |
829
|
|
|
|
830
|
|
|
def lifetimes(self, dates, include_start_date): |
831
|
|
|
""" |
832
|
|
|
Compute a DataFrame representing asset lifetimes for the specified date |
833
|
|
|
range. |
834
|
|
|
|
835
|
|
|
Parameters |
836
|
|
|
---------- |
837
|
|
|
dates : pd.DatetimeIndex |
838
|
|
|
The dates for which to compute lifetimes. |
839
|
|
|
include_start_date : bool |
840
|
|
|
Whether or not to count the asset as alive on its start_date. |
841
|
|
|
|
842
|
|
|
This is useful in a backtesting context where `lifetimes` is being |
843
|
|
|
used to signify "do I have data for this asset as of the morning of |
844
|
|
|
this date?" For many financial metrics, (e.g. daily close), data |
845
|
|
|
isn't available for an asset until the end of the asset's first |
846
|
|
|
day. |
847
|
|
|
|
848
|
|
|
Returns |
849
|
|
|
------- |
850
|
|
|
lifetimes : pd.DataFrame |
851
|
|
|
A frame of dtype bool with `dates` as index and an Int64Index of |
852
|
|
|
assets as columns. The value at `lifetimes.loc[date, asset]` will |
853
|
|
|
be True iff `asset` existed on `date`. If `include_start_date` is |
854
|
|
|
False, then lifetimes.loc[date, asset] will be false when date == |
855
|
|
|
asset.start_date. |
856
|
|
|
|
857
|
|
|
See Also |
858
|
|
|
-------- |
859
|
|
|
numpy.putmask |
860
|
|
|
zipline.pipeline.engine.SimplePipelineEngine._compute_root_mask |
861
|
|
|
""" |
862
|
|
|
# This is a less than ideal place to do this, because if someone adds |
863
|
|
|
# assets to the finder after we've touched lifetimes we won't have |
864
|
|
|
# those new assets available. Mutability is not my favorite |
865
|
|
|
# programming feature. |
866
|
|
|
if self._asset_lifetimes is None: |
867
|
|
|
self._asset_lifetimes = self._compute_asset_lifetimes() |
868
|
|
|
lifetimes = self._asset_lifetimes |
869
|
|
|
|
870
|
|
|
raw_dates = dates.asi8[:, None] |
871
|
|
|
if include_start_date: |
872
|
|
|
mask = lifetimes.start <= raw_dates |
873
|
|
|
else: |
874
|
|
|
mask = lifetimes.start < raw_dates |
875
|
|
|
mask &= (raw_dates <= lifetimes.end) |
876
|
|
|
|
877
|
|
|
return pd.DataFrame(mask, index=dates, columns=lifetimes.sid) |
878
|
|
|
|
879
|
|
|
|
880
|
|
|
class AssetConvertible(with_metaclass(ABCMeta)): |
881
|
|
|
""" |
882
|
|
|
ABC for types that are convertible to integer-representations of |
883
|
|
|
Assets. |
884
|
|
|
|
885
|
|
|
Includes Asset, six.string_types, and Integral |
886
|
|
|
""" |
887
|
|
|
pass |
888
|
|
|
|
889
|
|
|
|
890
|
|
|
AssetConvertible.register(Integral) |
891
|
|
|
AssetConvertible.register(Asset) |
892
|
|
|
# Use six.string_types for Python2/3 compatibility |
893
|
|
|
for _type in string_types: |
894
|
|
|
AssetConvertible.register(_type) |
895
|
|
|
|
896
|
|
|
|
897
|
|
|
class NotAssetConvertible(ValueError): |
898
|
|
|
pass |
899
|
|
|
|
900
|
|
|
|
901
|
|
|
class AssetFinderCachedEquities(AssetFinder): |
902
|
|
|
""" |
903
|
|
|
An extension to AssetFinder that loads all equities from equities table |
904
|
|
|
into memory and overrides the methods that lookup_symbol uses to look up |
905
|
|
|
those equities. |
906
|
|
|
""" |
907
|
|
|
def __init__(self, engine): |
908
|
|
|
super(AssetFinderCachedEquities, self).__init__(engine) |
909
|
|
|
self.fuzzy_symbol_hashed_equities = {} |
910
|
|
|
self.company_share_class_hashed_equities = {} |
911
|
|
|
self.hashed_equities = sa.select(self.equities.c).execute().fetchall() |
912
|
|
|
self._load_hashed_equities() |
913
|
|
|
|
914
|
|
|
def _load_hashed_equities(self): |
915
|
|
|
""" |
916
|
|
|
Populates two maps - fuzzy symbol to list of equities having that |
917
|
|
|
fuzzy symbol and company symbol/share class symbol to list of |
918
|
|
|
equities having that combination of company symbol/share class symbol. |
919
|
|
|
""" |
920
|
|
|
for equity in self.hashed_equities: |
921
|
|
|
company_symbol = equity['company_symbol'] |
922
|
|
|
share_class_symbol = equity['share_class_symbol'] |
923
|
|
|
fuzzy_symbol = equity['fuzzy_symbol'] |
924
|
|
|
asset = self._convert_row_to_equity(equity) |
925
|
|
|
self.company_share_class_hashed_equities.setdefault( |
926
|
|
|
(company_symbol, share_class_symbol), |
927
|
|
|
[] |
928
|
|
|
).append(asset) |
929
|
|
|
self.fuzzy_symbol_hashed_equities.setdefault( |
930
|
|
|
fuzzy_symbol, [] |
931
|
|
|
).append(asset) |
932
|
|
|
|
933
|
|
|
def _convert_row_to_equity(self, row): |
934
|
|
|
""" |
935
|
|
|
Converts a SQLAlchemy equity row to an Equity object. |
936
|
|
|
""" |
937
|
|
|
return Equity(**_convert_asset_timestamp_fields(dict(row))) |
938
|
|
|
|
939
|
|
|
def _get_fuzzy_candidates(self, fuzzy_symbol): |
940
|
|
|
return self.fuzzy_symbol_hashed_equities.get(fuzzy_symbol, ()) |
941
|
|
|
|
942
|
|
|
def _get_fuzzy_candidates_in_range(self, fuzzy_symbol, ad_value): |
943
|
|
|
return only_active_assets( |
944
|
|
|
ad_value, |
945
|
|
|
self._get_fuzzy_candidates(fuzzy_symbol), |
946
|
|
|
) |
947
|
|
|
|
948
|
|
|
def _get_split_candidates(self, company_symbol, share_class_symbol): |
949
|
|
|
return self.company_share_class_hashed_equities.get( |
950
|
|
|
(company_symbol, share_class_symbol), |
951
|
|
|
(), |
952
|
|
|
) |
953
|
|
|
|
954
|
|
|
def _get_split_candidates_in_range(self, |
955
|
|
|
company_symbol, |
956
|
|
|
share_class_symbol, |
957
|
|
|
ad_value): |
958
|
|
|
return sorted( |
959
|
|
|
only_active_assets( |
960
|
|
|
ad_value, |
961
|
|
|
self._get_split_candidates(company_symbol, share_class_symbol), |
962
|
|
|
), |
963
|
|
|
key=lambda x: (x.start_date, x.end_date), |
964
|
|
|
reverse=True, |
965
|
|
|
) |
966
|
|
|
|
967
|
|
|
def _resolve_no_matching_candidates(self, |
968
|
|
|
company_symbol, |
969
|
|
|
share_class_symbol, |
970
|
|
|
ad_value): |
971
|
|
|
equities = self._get_split_candidates( |
972
|
|
|
company_symbol, share_class_symbol |
973
|
|
|
) |
974
|
|
|
partial_candidates = [] |
975
|
|
|
for equity in equities: |
976
|
|
|
if equity.start_date.value <= ad_value: |
977
|
|
|
partial_candidates.append(equity) |
978
|
|
|
if partial_candidates: |
979
|
|
|
partial_candidates = sorted( |
980
|
|
|
partial_candidates, |
981
|
|
|
key=lambda x: x.end_date, |
982
|
|
|
reverse=True |
983
|
|
|
) |
984
|
|
|
return partial_candidates |
985
|
|
|
|
986
|
|
|
def _get_best_candidate(self, candidates): |
987
|
|
|
return candidates[0] |
988
|
|
|
|
989
|
|
|
def _get_equities_from_candidates(self, candidates): |
990
|
|
|
return candidates |
991
|
|
|
|
992
|
|
|
|
993
|
|
|
def was_active(reference_date_value, asset): |
994
|
|
|
""" |
995
|
|
|
Whether or not `asset` was active at the time corresponding to |
996
|
|
|
`reference_date_value`. |
997
|
|
|
|
998
|
|
|
Parameters |
999
|
|
|
---------- |
1000
|
|
|
reference_date_value : int |
1001
|
|
|
Date, represented as nanoseconds since EPOCH, for which we want to know |
1002
|
|
|
if `asset` was alive. This is generally the result of accessing the |
1003
|
|
|
`value` attribute of a pandas Timestamp. |
1004
|
|
|
asset : Asset |
1005
|
|
|
The asset object to check. |
1006
|
|
|
|
1007
|
|
|
Returns |
1008
|
|
|
------- |
1009
|
|
|
was_active : bool |
1010
|
|
|
Whether or not the `asset` existed at the specified time. |
1011
|
|
|
""" |
1012
|
|
|
return ( |
1013
|
|
|
asset.start_date.value |
1014
|
|
|
<= reference_date_value |
1015
|
|
|
<= asset.end_date.value |
1016
|
|
|
) |
1017
|
|
|
|
1018
|
|
|
|
1019
|
|
|
def only_active_assets(reference_date_value, assets): |
1020
|
|
|
""" |
1021
|
|
|
Filter an iterable of Asset objects down to just assets that were alive at |
1022
|
|
|
the time corresponding to `reference_date_value`. |
1023
|
|
|
|
1024
|
|
|
Parameters |
1025
|
|
|
---------- |
1026
|
|
|
reference_date_value : int |
1027
|
|
|
Date, represented as nanoseconds since EPOCH, for which we want to know |
1028
|
|
|
if `asset` was alive. This is generally the result of accessing the |
1029
|
|
|
`value` attribute of a pandas Timestamp. |
1030
|
|
|
assets : iterable[Asset] |
1031
|
|
|
The assets to filter. |
1032
|
|
|
|
1033
|
|
|
Returns |
1034
|
|
|
------- |
1035
|
|
|
active_assets : list |
1036
|
|
|
List of the active assets from `assets` on the requested date. |
1037
|
|
|
""" |
1038
|
|
|
return [a for a in assets if was_active(reference_date_value, a)] |
1039
|
|
|
|