|
1
|
|
|
# |
|
2
|
|
|
# Copyright 2013 Quantopian, Inc. |
|
3
|
|
|
# |
|
4
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
5
|
|
|
# you may not use this file except in compliance with the License. |
|
6
|
|
|
# You may obtain a copy of the License at |
|
7
|
|
|
# |
|
8
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
9
|
|
|
# |
|
10
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
11
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
12
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
13
|
|
|
# See the License for the specific language governing permissions and |
|
14
|
|
|
# limitations under the License. |
|
15
|
|
|
|
|
16
|
|
|
""" |
|
17
|
|
|
Tests for the zipline.finance package |
|
18
|
|
|
""" |
|
19
|
|
|
import itertools |
|
20
|
|
|
import operator |
|
21
|
|
|
|
|
22
|
|
|
import pytz |
|
23
|
|
|
|
|
24
|
|
|
from unittest import TestCase |
|
25
|
|
|
from datetime import datetime, timedelta |
|
26
|
|
|
|
|
27
|
|
|
import numpy as np |
|
28
|
|
|
|
|
29
|
|
|
from nose.tools import timed |
|
30
|
|
|
|
|
31
|
|
|
from six.moves import range |
|
32
|
|
|
|
|
33
|
|
|
import zipline.protocol |
|
34
|
|
|
from zipline.protocol import Event, DATASOURCE_TYPE |
|
35
|
|
|
|
|
36
|
|
|
import zipline.utils.factory as factory |
|
37
|
|
|
import zipline.utils.simfactory as simfactory |
|
38
|
|
|
|
|
39
|
|
|
from zipline.finance.blotter import Blotter |
|
40
|
|
|
from zipline.gens.composites import date_sorted_sources |
|
41
|
|
|
|
|
42
|
|
|
from zipline.finance.trading import TradingEnvironment |
|
43
|
|
|
from zipline.finance.execution import MarketOrder, LimitOrder |
|
44
|
|
|
from zipline.finance.trading import SimulationParameters |
|
45
|
|
|
|
|
46
|
|
|
from zipline.finance.performance import PerformanceTracker |
|
47
|
|
|
from zipline.utils.test_utils import( |
|
48
|
|
|
setup_logger, |
|
49
|
|
|
teardown_logger, |
|
50
|
|
|
assert_single_position |
|
51
|
|
|
) |
|
52
|
|
|
|
|
53
|
|
|
DEFAULT_TIMEOUT = 15 # seconds |
|
54
|
|
|
EXTENDED_TIMEOUT = 90 |
|
55
|
|
|
|
|
56
|
|
|
_multiprocess_can_split_ = False |
|
57
|
|
|
|
|
58
|
|
|
|
|
59
|
|
|
class FinanceTestCase(TestCase): |
|
60
|
|
|
|
|
61
|
|
|
@classmethod |
|
62
|
|
|
def setUpClass(cls): |
|
63
|
|
|
cls.env = TradingEnvironment() |
|
64
|
|
|
cls.env.write_data(equities_identifiers=[1, 133]) |
|
65
|
|
|
|
|
66
|
|
|
@classmethod |
|
67
|
|
|
def tearDownClass(cls): |
|
68
|
|
|
del cls.env |
|
69
|
|
|
|
|
70
|
|
|
def setUp(self): |
|
71
|
|
|
self.zipline_test_config = { |
|
72
|
|
|
'sid': 133, |
|
73
|
|
|
} |
|
74
|
|
|
|
|
75
|
|
|
setup_logger(self) |
|
76
|
|
|
|
|
77
|
|
|
def tearDown(self): |
|
78
|
|
|
teardown_logger(self) |
|
79
|
|
|
|
|
80
|
|
|
@timed(DEFAULT_TIMEOUT) |
|
81
|
|
|
def test_factory_daily(self): |
|
82
|
|
|
sim_params = factory.create_simulation_parameters() |
|
83
|
|
|
trade_source = factory.create_daily_trade_source( |
|
84
|
|
|
[133], |
|
85
|
|
|
sim_params, |
|
86
|
|
|
env=self.env, |
|
87
|
|
|
) |
|
88
|
|
|
prev = None |
|
89
|
|
|
for trade in trade_source: |
|
90
|
|
|
if prev: |
|
91
|
|
|
self.assertTrue(trade.dt > prev.dt) |
|
92
|
|
|
prev = trade |
|
93
|
|
|
|
|
94
|
|
|
@timed(EXTENDED_TIMEOUT) |
|
95
|
|
|
def test_full_zipline(self): |
|
96
|
|
|
# provide enough trades to ensure all orders are filled. |
|
97
|
|
|
self.zipline_test_config['order_count'] = 100 |
|
98
|
|
|
# making a small order amount, so that each order is filled |
|
99
|
|
|
# in a single transaction, and txn_count == order_count. |
|
100
|
|
|
self.zipline_test_config['order_amount'] = 25 |
|
101
|
|
|
# No transactions can be filled on the first trade, so |
|
102
|
|
|
# we have one extra trade to ensure all orders are filled. |
|
103
|
|
|
self.zipline_test_config['trade_count'] = 101 |
|
104
|
|
|
full_zipline = simfactory.create_test_zipline( |
|
105
|
|
|
**self.zipline_test_config) |
|
106
|
|
|
assert_single_position(self, full_zipline) |
|
107
|
|
|
|
|
108
|
|
|
# TODO: write tests for short sales |
|
109
|
|
|
# TODO: write a test to do massive buying or shorting. |
|
110
|
|
|
|
|
111
|
|
|
@timed(DEFAULT_TIMEOUT) |
|
112
|
|
|
def test_partially_filled_orders(self): |
|
113
|
|
|
|
|
114
|
|
|
# create a scenario where order size and trade size are equal |
|
115
|
|
|
# so that orders must be spread out over several trades. |
|
116
|
|
|
params = { |
|
117
|
|
|
'trade_count': 360, |
|
118
|
|
|
'trade_amount': 100, |
|
119
|
|
|
'trade_interval': timedelta(minutes=1), |
|
120
|
|
|
'order_count': 2, |
|
121
|
|
|
'order_amount': 100, |
|
122
|
|
|
'order_interval': timedelta(minutes=1), |
|
123
|
|
|
# because we placed an order for 100 shares, and the volume |
|
124
|
|
|
# of each trade is 100, the simulator should spread the order |
|
125
|
|
|
# into 4 trades of 25 shares per order. |
|
126
|
|
|
'expected_txn_count': 8, |
|
127
|
|
|
'expected_txn_volume': 2 * 100 |
|
128
|
|
|
} |
|
129
|
|
|
|
|
130
|
|
|
self.transaction_sim(**params) |
|
131
|
|
|
|
|
132
|
|
|
# same scenario, but with short sales |
|
133
|
|
|
params2 = { |
|
134
|
|
|
'trade_count': 360, |
|
135
|
|
|
'trade_amount': 100, |
|
136
|
|
|
'trade_interval': timedelta(minutes=1), |
|
137
|
|
|
'order_count': 2, |
|
138
|
|
|
'order_amount': -100, |
|
139
|
|
|
'order_interval': timedelta(minutes=1), |
|
140
|
|
|
'expected_txn_count': 8, |
|
141
|
|
|
'expected_txn_volume': 2 * -100 |
|
142
|
|
|
} |
|
143
|
|
|
|
|
144
|
|
|
self.transaction_sim(**params2) |
|
145
|
|
|
|
|
146
|
|
|
@timed(DEFAULT_TIMEOUT) |
|
147
|
|
|
def test_collapsing_orders(self): |
|
148
|
|
|
# create a scenario where order.amount <<< trade.volume |
|
149
|
|
|
# to test that several orders can be covered properly by one trade, |
|
150
|
|
|
# but are represented by multiple transactions. |
|
151
|
|
|
params1 = { |
|
152
|
|
|
'trade_count': 6, |
|
153
|
|
|
'trade_amount': 100, |
|
154
|
|
|
'trade_interval': timedelta(hours=1), |
|
155
|
|
|
'order_count': 24, |
|
156
|
|
|
'order_amount': 1, |
|
157
|
|
|
'order_interval': timedelta(minutes=1), |
|
158
|
|
|
# because we placed an orders totaling less than 25% of one trade |
|
159
|
|
|
# the simulator should produce just one transaction. |
|
160
|
|
|
'expected_txn_count': 24, |
|
161
|
|
|
'expected_txn_volume': 24 |
|
162
|
|
|
} |
|
163
|
|
|
self.transaction_sim(**params1) |
|
164
|
|
|
|
|
165
|
|
|
# second verse, same as the first. except short! |
|
166
|
|
|
params2 = { |
|
167
|
|
|
'trade_count': 6, |
|
168
|
|
|
'trade_amount': 100, |
|
169
|
|
|
'trade_interval': timedelta(hours=1), |
|
170
|
|
|
'order_count': 24, |
|
171
|
|
|
'order_amount': -1, |
|
172
|
|
|
'order_interval': timedelta(minutes=1), |
|
173
|
|
|
'expected_txn_count': 24, |
|
174
|
|
|
'expected_txn_volume': -24 |
|
175
|
|
|
} |
|
176
|
|
|
self.transaction_sim(**params2) |
|
177
|
|
|
|
|
178
|
|
|
# Runs the collapsed trades over daily trade intervals. |
|
179
|
|
|
# Ensuring that our delay works for daily intervals as well. |
|
180
|
|
|
params3 = { |
|
181
|
|
|
'trade_count': 6, |
|
182
|
|
|
'trade_amount': 100, |
|
183
|
|
|
'trade_interval': timedelta(days=1), |
|
184
|
|
|
'order_count': 24, |
|
185
|
|
|
'order_amount': 1, |
|
186
|
|
|
'order_interval': timedelta(minutes=1), |
|
187
|
|
|
'expected_txn_count': 24, |
|
188
|
|
|
'expected_txn_volume': 24 |
|
189
|
|
|
} |
|
190
|
|
|
self.transaction_sim(**params3) |
|
191
|
|
|
|
|
192
|
|
|
@timed(DEFAULT_TIMEOUT) |
|
193
|
|
|
def test_alternating_long_short(self): |
|
194
|
|
|
# create a scenario where we alternate buys and sells |
|
195
|
|
|
params1 = { |
|
196
|
|
|
'trade_count': int(6.5 * 60 * 4), |
|
197
|
|
|
'trade_amount': 100, |
|
198
|
|
|
'trade_interval': timedelta(minutes=1), |
|
199
|
|
|
'order_count': 4, |
|
200
|
|
|
'order_amount': 10, |
|
201
|
|
|
'order_interval': timedelta(hours=24), |
|
202
|
|
|
'alternate': True, |
|
203
|
|
|
'complete_fill': True, |
|
204
|
|
|
'expected_txn_count': 4, |
|
205
|
|
|
'expected_txn_volume': 0 # equal buys and sells |
|
206
|
|
|
} |
|
207
|
|
|
self.transaction_sim(**params1) |
|
208
|
|
|
|
|
209
|
|
|
def transaction_sim(self, **params): |
|
210
|
|
|
""" This is a utility method that asserts expected |
|
211
|
|
|
results for conversion of orders to transactions given a |
|
212
|
|
|
trade history""" |
|
213
|
|
|
|
|
214
|
|
|
trade_count = params['trade_count'] |
|
215
|
|
|
trade_interval = params['trade_interval'] |
|
216
|
|
|
order_count = params['order_count'] |
|
217
|
|
|
order_amount = params['order_amount'] |
|
218
|
|
|
order_interval = params['order_interval'] |
|
219
|
|
|
expected_txn_count = params['expected_txn_count'] |
|
220
|
|
|
expected_txn_volume = params['expected_txn_volume'] |
|
221
|
|
|
# optional parameters |
|
222
|
|
|
# --------------------- |
|
223
|
|
|
# if present, alternate between long and short sales |
|
224
|
|
|
alternate = params.get('alternate') |
|
225
|
|
|
# if present, expect transaction amounts to match orders exactly. |
|
226
|
|
|
complete_fill = params.get('complete_fill') |
|
227
|
|
|
|
|
228
|
|
|
sid = 1 |
|
229
|
|
|
sim_params = factory.create_simulation_parameters() |
|
230
|
|
|
blotter = Blotter() |
|
231
|
|
|
price = [10.1] * trade_count |
|
232
|
|
|
volume = [100] * trade_count |
|
233
|
|
|
start_date = sim_params.first_open |
|
234
|
|
|
|
|
235
|
|
|
generated_trades = factory.create_trade_history( |
|
236
|
|
|
sid, |
|
237
|
|
|
price, |
|
238
|
|
|
volume, |
|
239
|
|
|
trade_interval, |
|
240
|
|
|
sim_params, |
|
241
|
|
|
env=self.env, |
|
242
|
|
|
) |
|
243
|
|
|
|
|
244
|
|
|
if alternate: |
|
245
|
|
|
alternator = -1 |
|
246
|
|
|
else: |
|
247
|
|
|
alternator = 1 |
|
248
|
|
|
|
|
249
|
|
|
order_date = start_date |
|
250
|
|
|
for i in range(order_count): |
|
251
|
|
|
|
|
252
|
|
|
blotter.set_date(order_date) |
|
253
|
|
|
blotter.order(sid, order_amount * alternator ** i, MarketOrder()) |
|
254
|
|
|
|
|
255
|
|
|
order_date = order_date + order_interval |
|
256
|
|
|
# move after market orders to just after market next |
|
257
|
|
|
# market open. |
|
258
|
|
|
if order_date.hour >= 21: |
|
259
|
|
|
if order_date.minute >= 00: |
|
260
|
|
|
order_date = order_date + timedelta(days=1) |
|
261
|
|
|
order_date = order_date.replace(hour=14, minute=30) |
|
262
|
|
|
|
|
263
|
|
|
# there should now be one open order list stored under the sid |
|
264
|
|
|
oo = blotter.open_orders |
|
265
|
|
|
self.assertEqual(len(oo), 1) |
|
266
|
|
|
self.assertTrue(sid in oo) |
|
267
|
|
|
order_list = oo[sid][:] # make copy |
|
268
|
|
|
self.assertEqual(order_count, len(order_list)) |
|
269
|
|
|
|
|
270
|
|
|
for i in range(order_count): |
|
271
|
|
|
order = order_list[i] |
|
272
|
|
|
self.assertEqual(order.sid, sid) |
|
273
|
|
|
self.assertEqual(order.amount, order_amount * alternator ** i) |
|
274
|
|
|
|
|
275
|
|
|
tracker = PerformanceTracker(sim_params, env=self.env) |
|
276
|
|
|
|
|
277
|
|
|
benchmark_returns = [ |
|
278
|
|
|
Event({'dt': dt, |
|
279
|
|
|
'returns': ret, |
|
280
|
|
|
'type': |
|
281
|
|
|
zipline.protocol.DATASOURCE_TYPE.BENCHMARK, |
|
282
|
|
|
'source_id': 'benchmarks'}) |
|
283
|
|
|
for dt, ret in self.env.benchmark_returns.iteritems() |
|
284
|
|
|
if dt.date() >= sim_params.period_start.date() and |
|
285
|
|
|
dt.date() <= sim_params.period_end.date() |
|
286
|
|
|
] |
|
287
|
|
|
|
|
288
|
|
|
generated_events = date_sorted_sources(generated_trades, |
|
289
|
|
|
benchmark_returns) |
|
290
|
|
|
|
|
291
|
|
|
# this approximates the loop inside TradingSimulationClient |
|
292
|
|
|
transactions = [] |
|
293
|
|
|
for dt, events in itertools.groupby(generated_events, |
|
294
|
|
|
operator.attrgetter('dt')): |
|
295
|
|
|
for event in events: |
|
296
|
|
|
if event.type == DATASOURCE_TYPE.TRADE: |
|
297
|
|
|
|
|
298
|
|
|
for txn, order in blotter.process_trade(event): |
|
299
|
|
|
transactions.append(txn) |
|
300
|
|
|
tracker.process_transaction(txn) |
|
301
|
|
|
elif event.type == DATASOURCE_TYPE.BENCHMARK: |
|
302
|
|
|
tracker.process_benchmark(event) |
|
303
|
|
|
elif event.type == DATASOURCE_TYPE.TRADE: |
|
304
|
|
|
tracker.process_trade(event) |
|
305
|
|
|
|
|
306
|
|
|
if complete_fill: |
|
307
|
|
|
self.assertEqual(len(transactions), len(order_list)) |
|
308
|
|
|
|
|
309
|
|
|
total_volume = 0 |
|
310
|
|
|
for i in range(len(transactions)): |
|
311
|
|
|
txn = transactions[i] |
|
312
|
|
|
total_volume += txn.amount |
|
313
|
|
|
if complete_fill: |
|
314
|
|
|
order = order_list[i] |
|
315
|
|
|
self.assertEqual(order.amount, txn.amount) |
|
316
|
|
|
|
|
317
|
|
|
self.assertEqual(total_volume, expected_txn_volume) |
|
318
|
|
|
self.assertEqual(len(transactions), expected_txn_count) |
|
319
|
|
|
|
|
320
|
|
|
cumulative_pos = tracker.cumulative_performance.positions[sid] |
|
321
|
|
|
self.assertEqual(total_volume, cumulative_pos.amount) |
|
322
|
|
|
|
|
323
|
|
|
# the open orders should not contain sid. |
|
324
|
|
|
oo = blotter.open_orders |
|
325
|
|
|
self.assertNotIn(sid, oo, "Entry is removed when no open orders") |
|
326
|
|
|
|
|
327
|
|
|
def test_blotter_processes_splits(self): |
|
328
|
|
|
sim_params = factory.create_simulation_parameters() |
|
329
|
|
|
blotter = Blotter() |
|
330
|
|
|
blotter.set_date(sim_params.period_start) |
|
331
|
|
|
|
|
332
|
|
|
# set up two open limit orders with very low limit prices, |
|
333
|
|
|
# one for sid 1 and one for sid 2 |
|
334
|
|
|
blotter.order(1, 100, LimitOrder(10)) |
|
335
|
|
|
blotter.order(2, 100, LimitOrder(10)) |
|
336
|
|
|
|
|
337
|
|
|
# send in a split for sid 2 |
|
338
|
|
|
split_event = factory.create_split(2, 0.33333, |
|
339
|
|
|
sim_params.period_start + |
|
340
|
|
|
timedelta(days=1)) |
|
341
|
|
|
|
|
342
|
|
|
blotter.process_split(split_event) |
|
343
|
|
|
|
|
344
|
|
|
for sid in [1, 2]: |
|
345
|
|
|
order_lists = blotter.open_orders[sid] |
|
346
|
|
|
self.assertIsNotNone(order_lists) |
|
347
|
|
|
self.assertEqual(1, len(order_lists)) |
|
348
|
|
|
|
|
349
|
|
|
aapl_order = blotter.open_orders[1][0].to_dict() |
|
350
|
|
|
fls_order = blotter.open_orders[2][0].to_dict() |
|
351
|
|
|
|
|
352
|
|
|
# make sure the aapl order didn't change |
|
353
|
|
|
self.assertEqual(100, aapl_order['amount']) |
|
354
|
|
|
self.assertEqual(10, aapl_order['limit']) |
|
355
|
|
|
self.assertEqual(1, aapl_order['sid']) |
|
356
|
|
|
|
|
357
|
|
|
# make sure the fls order did change |
|
358
|
|
|
# to 300 shares at 3.33 |
|
359
|
|
|
self.assertEqual(300, fls_order['amount']) |
|
360
|
|
|
self.assertEqual(3.33, fls_order['limit']) |
|
361
|
|
|
self.assertEqual(2, fls_order['sid']) |
|
362
|
|
|
|
|
363
|
|
|
|
|
364
|
|
|
class TradingEnvironmentTestCase(TestCase): |
|
365
|
|
|
""" |
|
366
|
|
|
Tests for date management utilities in zipline.finance.trading. |
|
367
|
|
|
""" |
|
368
|
|
|
|
|
369
|
|
|
def setUp(self): |
|
370
|
|
|
setup_logger(self) |
|
371
|
|
|
|
|
372
|
|
|
def tearDown(self): |
|
373
|
|
|
teardown_logger(self) |
|
374
|
|
|
|
|
375
|
|
|
@classmethod |
|
376
|
|
|
def setUpClass(cls): |
|
377
|
|
|
cls.env = TradingEnvironment() |
|
378
|
|
|
|
|
379
|
|
|
@classmethod |
|
380
|
|
|
def tearDownClass(cls): |
|
381
|
|
|
del cls.env |
|
382
|
|
|
|
|
383
|
|
|
@timed(DEFAULT_TIMEOUT) |
|
384
|
|
|
def test_is_trading_day(self): |
|
385
|
|
|
# holidays taken from: http://www.nyse.com/press/1191407641943.html |
|
386
|
|
|
new_years = datetime(2008, 1, 1, tzinfo=pytz.utc) |
|
387
|
|
|
mlk_day = datetime(2008, 1, 21, tzinfo=pytz.utc) |
|
388
|
|
|
presidents = datetime(2008, 2, 18, tzinfo=pytz.utc) |
|
389
|
|
|
good_friday = datetime(2008, 3, 21, tzinfo=pytz.utc) |
|
390
|
|
|
memorial_day = datetime(2008, 5, 26, tzinfo=pytz.utc) |
|
391
|
|
|
july_4th = datetime(2008, 7, 4, tzinfo=pytz.utc) |
|
392
|
|
|
labor_day = datetime(2008, 9, 1, tzinfo=pytz.utc) |
|
393
|
|
|
tgiving = datetime(2008, 11, 27, tzinfo=pytz.utc) |
|
394
|
|
|
christmas = datetime(2008, 5, 25, tzinfo=pytz.utc) |
|
395
|
|
|
a_saturday = datetime(2008, 8, 2, tzinfo=pytz.utc) |
|
396
|
|
|
a_sunday = datetime(2008, 10, 12, tzinfo=pytz.utc) |
|
397
|
|
|
holidays = [ |
|
398
|
|
|
new_years, |
|
399
|
|
|
mlk_day, |
|
400
|
|
|
presidents, |
|
401
|
|
|
good_friday, |
|
402
|
|
|
memorial_day, |
|
403
|
|
|
july_4th, |
|
404
|
|
|
labor_day, |
|
405
|
|
|
tgiving, |
|
406
|
|
|
christmas, |
|
407
|
|
|
a_saturday, |
|
408
|
|
|
a_sunday |
|
409
|
|
|
] |
|
410
|
|
|
|
|
411
|
|
|
for holiday in holidays: |
|
412
|
|
|
self.assertTrue(not self.env.is_trading_day(holiday)) |
|
413
|
|
|
|
|
414
|
|
|
first_trading_day = datetime(2008, 1, 2, tzinfo=pytz.utc) |
|
415
|
|
|
last_trading_day = datetime(2008, 12, 31, tzinfo=pytz.utc) |
|
416
|
|
|
workdays = [first_trading_day, last_trading_day] |
|
417
|
|
|
|
|
418
|
|
|
for workday in workdays: |
|
419
|
|
|
self.assertTrue(self.env.is_trading_day(workday)) |
|
420
|
|
|
|
|
421
|
|
|
def test_simulation_parameters(self): |
|
422
|
|
|
env = SimulationParameters( |
|
423
|
|
|
period_start=datetime(2008, 1, 1, tzinfo=pytz.utc), |
|
424
|
|
|
period_end=datetime(2008, 12, 31, tzinfo=pytz.utc), |
|
425
|
|
|
capital_base=100000, |
|
426
|
|
|
env=self.env, |
|
427
|
|
|
) |
|
428
|
|
|
|
|
429
|
|
|
self.assertTrue(env.last_close.month == 12) |
|
430
|
|
|
self.assertTrue(env.last_close.day == 31) |
|
431
|
|
|
|
|
432
|
|
|
@timed(DEFAULT_TIMEOUT) |
|
433
|
|
|
def test_sim_params_days_in_period(self): |
|
434
|
|
|
|
|
435
|
|
|
# January 2008 |
|
436
|
|
|
# Su Mo Tu We Th Fr Sa |
|
437
|
|
|
# 1 2 3 4 5 |
|
438
|
|
|
# 6 7 8 9 10 11 12 |
|
439
|
|
|
# 13 14 15 16 17 18 19 |
|
440
|
|
|
# 20 21 22 23 24 25 26 |
|
441
|
|
|
# 27 28 29 30 31 |
|
442
|
|
|
|
|
443
|
|
|
params = SimulationParameters( |
|
444
|
|
|
period_start=datetime(2007, 12, 31, tzinfo=pytz.utc), |
|
445
|
|
|
period_end=datetime(2008, 1, 7, tzinfo=pytz.utc), |
|
446
|
|
|
capital_base=100000, |
|
447
|
|
|
env=self.env, |
|
448
|
|
|
) |
|
449
|
|
|
|
|
450
|
|
|
expected_trading_days = ( |
|
451
|
|
|
datetime(2007, 12, 31, tzinfo=pytz.utc), |
|
452
|
|
|
# Skip new years |
|
453
|
|
|
# holidays taken from: http://www.nyse.com/press/1191407641943.html |
|
454
|
|
|
datetime(2008, 1, 2, tzinfo=pytz.utc), |
|
455
|
|
|
datetime(2008, 1, 3, tzinfo=pytz.utc), |
|
456
|
|
|
datetime(2008, 1, 4, tzinfo=pytz.utc), |
|
457
|
|
|
# Skip Saturday |
|
458
|
|
|
# Skip Sunday |
|
459
|
|
|
datetime(2008, 1, 7, tzinfo=pytz.utc) |
|
460
|
|
|
) |
|
461
|
|
|
|
|
462
|
|
|
num_expected_trading_days = 5 |
|
463
|
|
|
self.assertEquals(num_expected_trading_days, params.days_in_period) |
|
464
|
|
|
np.testing.assert_array_equal(expected_trading_days, |
|
465
|
|
|
params.trading_days.tolist()) |
|
466
|
|
|
|
|
467
|
|
|
@timed(DEFAULT_TIMEOUT) |
|
468
|
|
|
def test_market_minute_window(self): |
|
469
|
|
|
|
|
470
|
|
|
# January 2008 |
|
471
|
|
|
# Su Mo Tu We Th Fr Sa |
|
472
|
|
|
# 1 2 3 4 5 |
|
473
|
|
|
# 6 7 8 9 10 11 12 |
|
474
|
|
|
# 13 14 15 16 17 18 19 |
|
475
|
|
|
# 20 21 22 23 24 25 26 |
|
476
|
|
|
# 27 28 29 30 31 |
|
477
|
|
|
|
|
478
|
|
|
us_east = pytz.timezone('US/Eastern') |
|
479
|
|
|
utc = pytz.utc |
|
480
|
|
|
|
|
481
|
|
|
# 10:01 AM Eastern on January 7th.. |
|
482
|
|
|
start = us_east.localize(datetime(2008, 1, 7, 10, 1)) |
|
483
|
|
|
utc_start = start.astimezone(utc) |
|
484
|
|
|
|
|
485
|
|
|
# Get the next 10 minutes |
|
486
|
|
|
minutes = self.env.market_minute_window( |
|
487
|
|
|
utc_start, 10, |
|
488
|
|
|
) |
|
489
|
|
|
self.assertEqual(len(minutes), 10) |
|
490
|
|
|
for i in range(10): |
|
491
|
|
|
self.assertEqual(minutes[i], utc_start + timedelta(minutes=i)) |
|
492
|
|
|
|
|
493
|
|
|
# Get the previous 10 minutes. |
|
494
|
|
|
minutes = self.env.market_minute_window( |
|
495
|
|
|
utc_start, 10, step=-1, |
|
496
|
|
|
) |
|
497
|
|
|
self.assertEqual(len(minutes), 10) |
|
498
|
|
|
for i in range(10): |
|
499
|
|
|
self.assertEqual(minutes[i], utc_start + timedelta(minutes=-i)) |
|
500
|
|
|
|
|
501
|
|
|
# Get the next 900 minutes, including utc_start, rolling over into the |
|
502
|
|
|
# next two days. |
|
503
|
|
|
# Should include: |
|
504
|
|
|
# Today: 10:01 AM -> 4:00 PM (360 minutes) |
|
505
|
|
|
# Tomorrow: 9:31 AM -> 4:00 PM (390 minutes, 750 total) |
|
506
|
|
|
# Last Day: 9:31 AM -> 12:00 PM (150 minutes, 900 total) |
|
507
|
|
|
minutes = self.env.market_minute_window( |
|
508
|
|
|
utc_start, 900, |
|
509
|
|
|
) |
|
510
|
|
|
today = self.env.market_minutes_for_day(start)[30:] |
|
511
|
|
|
tomorrow = self.env.market_minutes_for_day( |
|
512
|
|
|
start + timedelta(days=1) |
|
513
|
|
|
) |
|
514
|
|
|
last_day = self.env.market_minutes_for_day( |
|
515
|
|
|
start + timedelta(days=2))[:150] |
|
516
|
|
|
|
|
517
|
|
|
self.assertEqual(len(minutes), 900) |
|
518
|
|
|
self.assertEqual(minutes[0], utc_start) |
|
519
|
|
|
self.assertTrue(all(today == minutes[:360])) |
|
520
|
|
|
self.assertTrue(all(tomorrow == minutes[360:750])) |
|
521
|
|
|
self.assertTrue(all(last_day == minutes[750:])) |
|
522
|
|
|
|
|
523
|
|
|
# Get the previous 801 minutes, including utc_start, rolling over into |
|
524
|
|
|
# Friday the 4th and Thursday the 3rd. |
|
525
|
|
|
# Should include: |
|
526
|
|
|
# Today: 10:01 AM -> 9:31 AM (31 minutes) |
|
527
|
|
|
# Friday: 4:00 PM -> 9:31 AM (390 minutes, 421 total) |
|
528
|
|
|
# Thursday: 4:00 PM -> 9:41 AM (380 minutes, 801 total) |
|
529
|
|
|
minutes = self.env.market_minute_window( |
|
530
|
|
|
utc_start, 801, step=-1, |
|
531
|
|
|
) |
|
532
|
|
|
|
|
533
|
|
|
today = self.env.market_minutes_for_day(start)[30::-1] |
|
534
|
|
|
# minus an extra two days from each of these to account for the two |
|
535
|
|
|
# weekend days we skipped |
|
536
|
|
|
friday = self.env.market_minutes_for_day( |
|
537
|
|
|
start + timedelta(days=-3), |
|
538
|
|
|
)[::-1] |
|
539
|
|
|
thursday = self.env.market_minutes_for_day( |
|
540
|
|
|
start + timedelta(days=-4), |
|
541
|
|
|
)[:9:-1] |
|
542
|
|
|
|
|
543
|
|
|
self.assertEqual(len(minutes), 801) |
|
544
|
|
|
self.assertEqual(minutes[0], utc_start) |
|
545
|
|
|
self.assertTrue(all(today == minutes[:31])) |
|
546
|
|
|
self.assertTrue(all(friday == minutes[31:421])) |
|
547
|
|
|
self.assertTrue(all(thursday == minutes[421:])) |
|
548
|
|
|
|
|
549
|
|
|
def test_max_date(self): |
|
550
|
|
|
max_date = datetime(2008, 8, 1, tzinfo=pytz.utc) |
|
551
|
|
|
env = TradingEnvironment(max_date=max_date) |
|
552
|
|
|
|
|
553
|
|
|
self.assertLessEqual(env.last_trading_day, max_date) |
|
554
|
|
|
self.assertLessEqual(env.treasury_curves.index[-1], |
|
555
|
|
|
max_date) |
|
556
|
|
|
|