1
|
|
|
# |
2
|
|
|
# Copyright 2013 Quantopian, Inc. |
3
|
|
|
# |
4
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
5
|
|
|
# you may not use this file except in compliance with the License. |
6
|
|
|
# You may obtain a copy of the License at |
7
|
|
|
# |
8
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
9
|
|
|
# |
10
|
|
|
# Unless required by applicable law or agreed to in writing, software |
11
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
12
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13
|
|
|
# See the License for the specific language governing permissions and |
14
|
|
|
# limitations under the License. |
15
|
|
|
|
16
|
|
|
""" |
17
|
|
|
Tests for the zipline.finance package |
18
|
|
|
""" |
19
|
|
|
import itertools |
20
|
|
|
import operator |
21
|
|
|
|
22
|
|
|
import pytz |
23
|
|
|
|
24
|
|
|
from unittest import TestCase |
25
|
|
|
from datetime import datetime, timedelta |
26
|
|
|
|
27
|
|
|
import numpy as np |
28
|
|
|
|
29
|
|
|
from nose.tools import timed |
30
|
|
|
|
31
|
|
|
from six.moves import range |
32
|
|
|
|
33
|
|
|
import zipline.protocol |
34
|
|
|
from zipline.protocol import Event, DATASOURCE_TYPE |
35
|
|
|
|
36
|
|
|
import zipline.utils.factory as factory |
37
|
|
|
import zipline.utils.simfactory as simfactory |
38
|
|
|
|
39
|
|
|
from zipline.finance.blotter import Blotter |
40
|
|
|
from zipline.gens.composites import date_sorted_sources |
41
|
|
|
|
42
|
|
|
from zipline.finance.trading import TradingEnvironment |
43
|
|
|
from zipline.finance.execution import MarketOrder, LimitOrder |
44
|
|
|
from zipline.finance.trading import SimulationParameters |
45
|
|
|
|
46
|
|
|
from zipline.finance.performance import PerformanceTracker |
47
|
|
|
from zipline.utils.test_utils import( |
48
|
|
|
setup_logger, |
49
|
|
|
teardown_logger, |
50
|
|
|
assert_single_position |
51
|
|
|
) |
52
|
|
|
|
53
|
|
|
DEFAULT_TIMEOUT = 15 # seconds |
54
|
|
|
EXTENDED_TIMEOUT = 90 |
55
|
|
|
|
56
|
|
|
_multiprocess_can_split_ = False |
57
|
|
|
|
58
|
|
|
|
59
|
|
|
class FinanceTestCase(TestCase): |
60
|
|
|
|
61
|
|
|
@classmethod |
62
|
|
|
def setUpClass(cls): |
63
|
|
|
cls.env = TradingEnvironment() |
64
|
|
|
cls.env.write_data(equities_identifiers=[1, 133]) |
65
|
|
|
|
66
|
|
|
@classmethod |
67
|
|
|
def tearDownClass(cls): |
68
|
|
|
del cls.env |
69
|
|
|
|
70
|
|
|
def setUp(self): |
71
|
|
|
self.zipline_test_config = { |
72
|
|
|
'sid': 133, |
73
|
|
|
} |
74
|
|
|
|
75
|
|
|
setup_logger(self) |
76
|
|
|
|
77
|
|
|
def tearDown(self): |
78
|
|
|
teardown_logger(self) |
79
|
|
|
|
80
|
|
|
@timed(DEFAULT_TIMEOUT) |
81
|
|
|
def test_factory_daily(self): |
82
|
|
|
sim_params = factory.create_simulation_parameters() |
83
|
|
|
trade_source = factory.create_daily_trade_source( |
84
|
|
|
[133], |
85
|
|
|
sim_params, |
86
|
|
|
env=self.env, |
87
|
|
|
) |
88
|
|
|
prev = None |
89
|
|
|
for trade in trade_source: |
90
|
|
|
if prev: |
91
|
|
|
self.assertTrue(trade.dt > prev.dt) |
92
|
|
|
prev = trade |
93
|
|
|
|
94
|
|
|
@timed(EXTENDED_TIMEOUT) |
95
|
|
|
def test_full_zipline(self): |
96
|
|
|
# provide enough trades to ensure all orders are filled. |
97
|
|
|
self.zipline_test_config['order_count'] = 100 |
98
|
|
|
# making a small order amount, so that each order is filled |
99
|
|
|
# in a single transaction, and txn_count == order_count. |
100
|
|
|
self.zipline_test_config['order_amount'] = 25 |
101
|
|
|
# No transactions can be filled on the first trade, so |
102
|
|
|
# we have one extra trade to ensure all orders are filled. |
103
|
|
|
self.zipline_test_config['trade_count'] = 101 |
104
|
|
|
full_zipline = simfactory.create_test_zipline( |
105
|
|
|
**self.zipline_test_config) |
106
|
|
|
assert_single_position(self, full_zipline) |
107
|
|
|
|
108
|
|
|
# TODO: write tests for short sales |
109
|
|
|
# TODO: write a test to do massive buying or shorting. |
110
|
|
|
|
111
|
|
|
@timed(DEFAULT_TIMEOUT) |
112
|
|
|
def test_partially_filled_orders(self): |
113
|
|
|
|
114
|
|
|
# create a scenario where order size and trade size are equal |
115
|
|
|
# so that orders must be spread out over several trades. |
116
|
|
|
params = { |
117
|
|
|
'trade_count': 360, |
118
|
|
|
'trade_amount': 100, |
119
|
|
|
'trade_interval': timedelta(minutes=1), |
120
|
|
|
'order_count': 2, |
121
|
|
|
'order_amount': 100, |
122
|
|
|
'order_interval': timedelta(minutes=1), |
123
|
|
|
# because we placed an order for 100 shares, and the volume |
124
|
|
|
# of each trade is 100, the simulator should spread the order |
125
|
|
|
# into 4 trades of 25 shares per order. |
126
|
|
|
'expected_txn_count': 8, |
127
|
|
|
'expected_txn_volume': 2 * 100 |
128
|
|
|
} |
129
|
|
|
|
130
|
|
|
self.transaction_sim(**params) |
131
|
|
|
|
132
|
|
|
# same scenario, but with short sales |
133
|
|
|
params2 = { |
134
|
|
|
'trade_count': 360, |
135
|
|
|
'trade_amount': 100, |
136
|
|
|
'trade_interval': timedelta(minutes=1), |
137
|
|
|
'order_count': 2, |
138
|
|
|
'order_amount': -100, |
139
|
|
|
'order_interval': timedelta(minutes=1), |
140
|
|
|
'expected_txn_count': 8, |
141
|
|
|
'expected_txn_volume': 2 * -100 |
142
|
|
|
} |
143
|
|
|
|
144
|
|
|
self.transaction_sim(**params2) |
145
|
|
|
|
146
|
|
|
@timed(DEFAULT_TIMEOUT) |
147
|
|
|
def test_collapsing_orders(self): |
148
|
|
|
# create a scenario where order.amount <<< trade.volume |
149
|
|
|
# to test that several orders can be covered properly by one trade, |
150
|
|
|
# but are represented by multiple transactions. |
151
|
|
|
params1 = { |
152
|
|
|
'trade_count': 6, |
153
|
|
|
'trade_amount': 100, |
154
|
|
|
'trade_interval': timedelta(hours=1), |
155
|
|
|
'order_count': 24, |
156
|
|
|
'order_amount': 1, |
157
|
|
|
'order_interval': timedelta(minutes=1), |
158
|
|
|
# because we placed an orders totaling less than 25% of one trade |
159
|
|
|
# the simulator should produce just one transaction. |
160
|
|
|
'expected_txn_count': 24, |
161
|
|
|
'expected_txn_volume': 24 |
162
|
|
|
} |
163
|
|
|
self.transaction_sim(**params1) |
164
|
|
|
|
165
|
|
|
# second verse, same as the first. except short! |
166
|
|
|
params2 = { |
167
|
|
|
'trade_count': 6, |
168
|
|
|
'trade_amount': 100, |
169
|
|
|
'trade_interval': timedelta(hours=1), |
170
|
|
|
'order_count': 24, |
171
|
|
|
'order_amount': -1, |
172
|
|
|
'order_interval': timedelta(minutes=1), |
173
|
|
|
'expected_txn_count': 24, |
174
|
|
|
'expected_txn_volume': -24 |
175
|
|
|
} |
176
|
|
|
self.transaction_sim(**params2) |
177
|
|
|
|
178
|
|
|
# Runs the collapsed trades over daily trade intervals. |
179
|
|
|
# Ensuring that our delay works for daily intervals as well. |
180
|
|
|
params3 = { |
181
|
|
|
'trade_count': 6, |
182
|
|
|
'trade_amount': 100, |
183
|
|
|
'trade_interval': timedelta(days=1), |
184
|
|
|
'order_count': 24, |
185
|
|
|
'order_amount': 1, |
186
|
|
|
'order_interval': timedelta(minutes=1), |
187
|
|
|
'expected_txn_count': 24, |
188
|
|
|
'expected_txn_volume': 24 |
189
|
|
|
} |
190
|
|
|
self.transaction_sim(**params3) |
191
|
|
|
|
192
|
|
|
@timed(DEFAULT_TIMEOUT) |
193
|
|
|
def test_alternating_long_short(self): |
194
|
|
|
# create a scenario where we alternate buys and sells |
195
|
|
|
params1 = { |
196
|
|
|
'trade_count': int(6.5 * 60 * 4), |
197
|
|
|
'trade_amount': 100, |
198
|
|
|
'trade_interval': timedelta(minutes=1), |
199
|
|
|
'order_count': 4, |
200
|
|
|
'order_amount': 10, |
201
|
|
|
'order_interval': timedelta(hours=24), |
202
|
|
|
'alternate': True, |
203
|
|
|
'complete_fill': True, |
204
|
|
|
'expected_txn_count': 4, |
205
|
|
|
'expected_txn_volume': 0 # equal buys and sells |
206
|
|
|
} |
207
|
|
|
self.transaction_sim(**params1) |
208
|
|
|
|
209
|
|
|
def transaction_sim(self, **params): |
210
|
|
|
""" This is a utility method that asserts expected |
211
|
|
|
results for conversion of orders to transactions given a |
212
|
|
|
trade history""" |
213
|
|
|
|
214
|
|
|
trade_count = params['trade_count'] |
215
|
|
|
trade_interval = params['trade_interval'] |
216
|
|
|
order_count = params['order_count'] |
217
|
|
|
order_amount = params['order_amount'] |
218
|
|
|
order_interval = params['order_interval'] |
219
|
|
|
expected_txn_count = params['expected_txn_count'] |
220
|
|
|
expected_txn_volume = params['expected_txn_volume'] |
221
|
|
|
# optional parameters |
222
|
|
|
# --------------------- |
223
|
|
|
# if present, alternate between long and short sales |
224
|
|
|
alternate = params.get('alternate') |
225
|
|
|
# if present, expect transaction amounts to match orders exactly. |
226
|
|
|
complete_fill = params.get('complete_fill') |
227
|
|
|
|
228
|
|
|
sid = 1 |
229
|
|
|
sim_params = factory.create_simulation_parameters() |
230
|
|
|
blotter = Blotter() |
231
|
|
|
price = [10.1] * trade_count |
232
|
|
|
volume = [100] * trade_count |
233
|
|
|
start_date = sim_params.first_open |
234
|
|
|
|
235
|
|
|
generated_trades = factory.create_trade_history( |
236
|
|
|
sid, |
237
|
|
|
price, |
238
|
|
|
volume, |
239
|
|
|
trade_interval, |
240
|
|
|
sim_params, |
241
|
|
|
env=self.env, |
242
|
|
|
) |
243
|
|
|
|
244
|
|
|
if alternate: |
245
|
|
|
alternator = -1 |
246
|
|
|
else: |
247
|
|
|
alternator = 1 |
248
|
|
|
|
249
|
|
|
order_date = start_date |
250
|
|
|
for i in range(order_count): |
251
|
|
|
|
252
|
|
|
blotter.set_date(order_date) |
253
|
|
|
blotter.order(sid, order_amount * alternator ** i, MarketOrder()) |
254
|
|
|
|
255
|
|
|
order_date = order_date + order_interval |
256
|
|
|
# move after market orders to just after market next |
257
|
|
|
# market open. |
258
|
|
|
if order_date.hour >= 21: |
259
|
|
|
if order_date.minute >= 00: |
260
|
|
|
order_date = order_date + timedelta(days=1) |
261
|
|
|
order_date = order_date.replace(hour=14, minute=30) |
262
|
|
|
|
263
|
|
|
# there should now be one open order list stored under the sid |
264
|
|
|
oo = blotter.open_orders |
265
|
|
|
self.assertEqual(len(oo), 1) |
266
|
|
|
self.assertTrue(sid in oo) |
267
|
|
|
order_list = oo[sid][:] # make copy |
268
|
|
|
self.assertEqual(order_count, len(order_list)) |
269
|
|
|
|
270
|
|
|
for i in range(order_count): |
271
|
|
|
order = order_list[i] |
272
|
|
|
self.assertEqual(order.sid, sid) |
273
|
|
|
self.assertEqual(order.amount, order_amount * alternator ** i) |
274
|
|
|
|
275
|
|
|
tracker = PerformanceTracker(sim_params, env=self.env) |
276
|
|
|
|
277
|
|
|
benchmark_returns = [ |
278
|
|
|
Event({'dt': dt, |
279
|
|
|
'returns': ret, |
280
|
|
|
'type': |
281
|
|
|
zipline.protocol.DATASOURCE_TYPE.BENCHMARK, |
282
|
|
|
'source_id': 'benchmarks'}) |
283
|
|
|
for dt, ret in self.env.benchmark_returns.iteritems() |
284
|
|
|
if dt.date() >= sim_params.period_start.date() and |
285
|
|
|
dt.date() <= sim_params.period_end.date() |
286
|
|
|
] |
287
|
|
|
|
288
|
|
|
generated_events = date_sorted_sources(generated_trades, |
289
|
|
|
benchmark_returns) |
290
|
|
|
|
291
|
|
|
# this approximates the loop inside TradingSimulationClient |
292
|
|
|
transactions = [] |
293
|
|
|
for dt, events in itertools.groupby(generated_events, |
294
|
|
|
operator.attrgetter('dt')): |
295
|
|
|
for event in events: |
296
|
|
|
if event.type == DATASOURCE_TYPE.TRADE: |
297
|
|
|
|
298
|
|
|
for txn, order in blotter.process_trade(event): |
299
|
|
|
transactions.append(txn) |
300
|
|
|
tracker.process_transaction(txn) |
301
|
|
|
elif event.type == DATASOURCE_TYPE.BENCHMARK: |
302
|
|
|
tracker.process_benchmark(event) |
303
|
|
|
elif event.type == DATASOURCE_TYPE.TRADE: |
304
|
|
|
tracker.process_trade(event) |
305
|
|
|
|
306
|
|
|
if complete_fill: |
307
|
|
|
self.assertEqual(len(transactions), len(order_list)) |
308
|
|
|
|
309
|
|
|
total_volume = 0 |
310
|
|
|
for i in range(len(transactions)): |
311
|
|
|
txn = transactions[i] |
312
|
|
|
total_volume += txn.amount |
313
|
|
|
if complete_fill: |
314
|
|
|
order = order_list[i] |
315
|
|
|
self.assertEqual(order.amount, txn.amount) |
316
|
|
|
|
317
|
|
|
self.assertEqual(total_volume, expected_txn_volume) |
318
|
|
|
self.assertEqual(len(transactions), expected_txn_count) |
319
|
|
|
|
320
|
|
|
cumulative_pos = tracker.cumulative_performance.positions[sid] |
321
|
|
|
self.assertEqual(total_volume, cumulative_pos.amount) |
322
|
|
|
|
323
|
|
|
# the open orders should not contain sid. |
324
|
|
|
oo = blotter.open_orders |
325
|
|
|
self.assertNotIn(sid, oo, "Entry is removed when no open orders") |
326
|
|
|
|
327
|
|
|
def test_blotter_processes_splits(self): |
328
|
|
|
sim_params = factory.create_simulation_parameters() |
329
|
|
|
blotter = Blotter() |
330
|
|
|
blotter.set_date(sim_params.period_start) |
331
|
|
|
|
332
|
|
|
# set up two open limit orders with very low limit prices, |
333
|
|
|
# one for sid 1 and one for sid 2 |
334
|
|
|
blotter.order(1, 100, LimitOrder(10)) |
335
|
|
|
blotter.order(2, 100, LimitOrder(10)) |
336
|
|
|
|
337
|
|
|
# send in a split for sid 2 |
338
|
|
|
split_event = factory.create_split(2, 0.33333, |
339
|
|
|
sim_params.period_start + |
340
|
|
|
timedelta(days=1)) |
341
|
|
|
|
342
|
|
|
blotter.process_split(split_event) |
343
|
|
|
|
344
|
|
|
for sid in [1, 2]: |
345
|
|
|
order_lists = blotter.open_orders[sid] |
346
|
|
|
self.assertIsNotNone(order_lists) |
347
|
|
|
self.assertEqual(1, len(order_lists)) |
348
|
|
|
|
349
|
|
|
aapl_order = blotter.open_orders[1][0].to_dict() |
350
|
|
|
fls_order = blotter.open_orders[2][0].to_dict() |
351
|
|
|
|
352
|
|
|
# make sure the aapl order didn't change |
353
|
|
|
self.assertEqual(100, aapl_order['amount']) |
354
|
|
|
self.assertEqual(10, aapl_order['limit']) |
355
|
|
|
self.assertEqual(1, aapl_order['sid']) |
356
|
|
|
|
357
|
|
|
# make sure the fls order did change |
358
|
|
|
# to 300 shares at 3.33 |
359
|
|
|
self.assertEqual(300, fls_order['amount']) |
360
|
|
|
self.assertEqual(3.33, fls_order['limit']) |
361
|
|
|
self.assertEqual(2, fls_order['sid']) |
362
|
|
|
|
363
|
|
|
|
364
|
|
|
class TradingEnvironmentTestCase(TestCase): |
365
|
|
|
""" |
366
|
|
|
Tests for date management utilities in zipline.finance.trading. |
367
|
|
|
""" |
368
|
|
|
|
369
|
|
|
def setUp(self): |
370
|
|
|
setup_logger(self) |
371
|
|
|
|
372
|
|
|
def tearDown(self): |
373
|
|
|
teardown_logger(self) |
374
|
|
|
|
375
|
|
|
@classmethod |
376
|
|
|
def setUpClass(cls): |
377
|
|
|
cls.env = TradingEnvironment() |
378
|
|
|
|
379
|
|
|
@classmethod |
380
|
|
|
def tearDownClass(cls): |
381
|
|
|
del cls.env |
382
|
|
|
|
383
|
|
|
@timed(DEFAULT_TIMEOUT) |
384
|
|
|
def test_is_trading_day(self): |
385
|
|
|
# holidays taken from: http://www.nyse.com/press/1191407641943.html |
386
|
|
|
new_years = datetime(2008, 1, 1, tzinfo=pytz.utc) |
387
|
|
|
mlk_day = datetime(2008, 1, 21, tzinfo=pytz.utc) |
388
|
|
|
presidents = datetime(2008, 2, 18, tzinfo=pytz.utc) |
389
|
|
|
good_friday = datetime(2008, 3, 21, tzinfo=pytz.utc) |
390
|
|
|
memorial_day = datetime(2008, 5, 26, tzinfo=pytz.utc) |
391
|
|
|
july_4th = datetime(2008, 7, 4, tzinfo=pytz.utc) |
392
|
|
|
labor_day = datetime(2008, 9, 1, tzinfo=pytz.utc) |
393
|
|
|
tgiving = datetime(2008, 11, 27, tzinfo=pytz.utc) |
394
|
|
|
christmas = datetime(2008, 5, 25, tzinfo=pytz.utc) |
395
|
|
|
a_saturday = datetime(2008, 8, 2, tzinfo=pytz.utc) |
396
|
|
|
a_sunday = datetime(2008, 10, 12, tzinfo=pytz.utc) |
397
|
|
|
holidays = [ |
398
|
|
|
new_years, |
399
|
|
|
mlk_day, |
400
|
|
|
presidents, |
401
|
|
|
good_friday, |
402
|
|
|
memorial_day, |
403
|
|
|
july_4th, |
404
|
|
|
labor_day, |
405
|
|
|
tgiving, |
406
|
|
|
christmas, |
407
|
|
|
a_saturday, |
408
|
|
|
a_sunday |
409
|
|
|
] |
410
|
|
|
|
411
|
|
|
for holiday in holidays: |
412
|
|
|
self.assertTrue(not self.env.is_trading_day(holiday)) |
413
|
|
|
|
414
|
|
|
first_trading_day = datetime(2008, 1, 2, tzinfo=pytz.utc) |
415
|
|
|
last_trading_day = datetime(2008, 12, 31, tzinfo=pytz.utc) |
416
|
|
|
workdays = [first_trading_day, last_trading_day] |
417
|
|
|
|
418
|
|
|
for workday in workdays: |
419
|
|
|
self.assertTrue(self.env.is_trading_day(workday)) |
420
|
|
|
|
421
|
|
|
def test_simulation_parameters(self): |
422
|
|
|
env = SimulationParameters( |
423
|
|
|
period_start=datetime(2008, 1, 1, tzinfo=pytz.utc), |
424
|
|
|
period_end=datetime(2008, 12, 31, tzinfo=pytz.utc), |
425
|
|
|
capital_base=100000, |
426
|
|
|
env=self.env, |
427
|
|
|
) |
428
|
|
|
|
429
|
|
|
self.assertTrue(env.last_close.month == 12) |
430
|
|
|
self.assertTrue(env.last_close.day == 31) |
431
|
|
|
|
432
|
|
|
@timed(DEFAULT_TIMEOUT) |
433
|
|
|
def test_sim_params_days_in_period(self): |
434
|
|
|
|
435
|
|
|
# January 2008 |
436
|
|
|
# Su Mo Tu We Th Fr Sa |
437
|
|
|
# 1 2 3 4 5 |
438
|
|
|
# 6 7 8 9 10 11 12 |
439
|
|
|
# 13 14 15 16 17 18 19 |
440
|
|
|
# 20 21 22 23 24 25 26 |
441
|
|
|
# 27 28 29 30 31 |
442
|
|
|
|
443
|
|
|
params = SimulationParameters( |
444
|
|
|
period_start=datetime(2007, 12, 31, tzinfo=pytz.utc), |
445
|
|
|
period_end=datetime(2008, 1, 7, tzinfo=pytz.utc), |
446
|
|
|
capital_base=100000, |
447
|
|
|
env=self.env, |
448
|
|
|
) |
449
|
|
|
|
450
|
|
|
expected_trading_days = ( |
451
|
|
|
datetime(2007, 12, 31, tzinfo=pytz.utc), |
452
|
|
|
# Skip new years |
453
|
|
|
# holidays taken from: http://www.nyse.com/press/1191407641943.html |
454
|
|
|
datetime(2008, 1, 2, tzinfo=pytz.utc), |
455
|
|
|
datetime(2008, 1, 3, tzinfo=pytz.utc), |
456
|
|
|
datetime(2008, 1, 4, tzinfo=pytz.utc), |
457
|
|
|
# Skip Saturday |
458
|
|
|
# Skip Sunday |
459
|
|
|
datetime(2008, 1, 7, tzinfo=pytz.utc) |
460
|
|
|
) |
461
|
|
|
|
462
|
|
|
num_expected_trading_days = 5 |
463
|
|
|
self.assertEquals(num_expected_trading_days, params.days_in_period) |
464
|
|
|
np.testing.assert_array_equal(expected_trading_days, |
465
|
|
|
params.trading_days.tolist()) |
466
|
|
|
|
467
|
|
|
@timed(DEFAULT_TIMEOUT) |
468
|
|
|
def test_market_minute_window(self): |
469
|
|
|
|
470
|
|
|
# January 2008 |
471
|
|
|
# Su Mo Tu We Th Fr Sa |
472
|
|
|
# 1 2 3 4 5 |
473
|
|
|
# 6 7 8 9 10 11 12 |
474
|
|
|
# 13 14 15 16 17 18 19 |
475
|
|
|
# 20 21 22 23 24 25 26 |
476
|
|
|
# 27 28 29 30 31 |
477
|
|
|
|
478
|
|
|
us_east = pytz.timezone('US/Eastern') |
479
|
|
|
utc = pytz.utc |
480
|
|
|
|
481
|
|
|
# 10:01 AM Eastern on January 7th.. |
482
|
|
|
start = us_east.localize(datetime(2008, 1, 7, 10, 1)) |
483
|
|
|
utc_start = start.astimezone(utc) |
484
|
|
|
|
485
|
|
|
# Get the next 10 minutes |
486
|
|
|
minutes = self.env.market_minute_window( |
487
|
|
|
utc_start, 10, |
488
|
|
|
) |
489
|
|
|
self.assertEqual(len(minutes), 10) |
490
|
|
|
for i in range(10): |
491
|
|
|
self.assertEqual(minutes[i], utc_start + timedelta(minutes=i)) |
492
|
|
|
|
493
|
|
|
# Get the previous 10 minutes. |
494
|
|
|
minutes = self.env.market_minute_window( |
495
|
|
|
utc_start, 10, step=-1, |
496
|
|
|
) |
497
|
|
|
self.assertEqual(len(minutes), 10) |
498
|
|
|
for i in range(10): |
499
|
|
|
self.assertEqual(minutes[i], utc_start + timedelta(minutes=-i)) |
500
|
|
|
|
501
|
|
|
# Get the next 900 minutes, including utc_start, rolling over into the |
502
|
|
|
# next two days. |
503
|
|
|
# Should include: |
504
|
|
|
# Today: 10:01 AM -> 4:00 PM (360 minutes) |
505
|
|
|
# Tomorrow: 9:31 AM -> 4:00 PM (390 minutes, 750 total) |
506
|
|
|
# Last Day: 9:31 AM -> 12:00 PM (150 minutes, 900 total) |
507
|
|
|
minutes = self.env.market_minute_window( |
508
|
|
|
utc_start, 900, |
509
|
|
|
) |
510
|
|
|
today = self.env.market_minutes_for_day(start)[30:] |
511
|
|
|
tomorrow = self.env.market_minutes_for_day( |
512
|
|
|
start + timedelta(days=1) |
513
|
|
|
) |
514
|
|
|
last_day = self.env.market_minutes_for_day( |
515
|
|
|
start + timedelta(days=2))[:150] |
516
|
|
|
|
517
|
|
|
self.assertEqual(len(minutes), 900) |
518
|
|
|
self.assertEqual(minutes[0], utc_start) |
519
|
|
|
self.assertTrue(all(today == minutes[:360])) |
520
|
|
|
self.assertTrue(all(tomorrow == minutes[360:750])) |
521
|
|
|
self.assertTrue(all(last_day == minutes[750:])) |
522
|
|
|
|
523
|
|
|
# Get the previous 801 minutes, including utc_start, rolling over into |
524
|
|
|
# Friday the 4th and Thursday the 3rd. |
525
|
|
|
# Should include: |
526
|
|
|
# Today: 10:01 AM -> 9:31 AM (31 minutes) |
527
|
|
|
# Friday: 4:00 PM -> 9:31 AM (390 minutes, 421 total) |
528
|
|
|
# Thursday: 4:00 PM -> 9:41 AM (380 minutes, 801 total) |
529
|
|
|
minutes = self.env.market_minute_window( |
530
|
|
|
utc_start, 801, step=-1, |
531
|
|
|
) |
532
|
|
|
|
533
|
|
|
today = self.env.market_minutes_for_day(start)[30::-1] |
534
|
|
|
# minus an extra two days from each of these to account for the two |
535
|
|
|
# weekend days we skipped |
536
|
|
|
friday = self.env.market_minutes_for_day( |
537
|
|
|
start + timedelta(days=-3), |
538
|
|
|
)[::-1] |
539
|
|
|
thursday = self.env.market_minutes_for_day( |
540
|
|
|
start + timedelta(days=-4), |
541
|
|
|
)[:9:-1] |
542
|
|
|
|
543
|
|
|
self.assertEqual(len(minutes), 801) |
544
|
|
|
self.assertEqual(minutes[0], utc_start) |
545
|
|
|
self.assertTrue(all(today == minutes[:31])) |
546
|
|
|
self.assertTrue(all(friday == minutes[31:421])) |
547
|
|
|
self.assertTrue(all(thursday == minutes[421:])) |
548
|
|
|
|
549
|
|
|
def test_max_date(self): |
550
|
|
|
max_date = datetime(2008, 8, 1, tzinfo=pytz.utc) |
551
|
|
|
env = TradingEnvironment(max_date=max_date) |
552
|
|
|
|
553
|
|
|
self.assertLessEqual(env.last_trading_day, max_date) |
554
|
|
|
self.assertLessEqual(env.treasury_curves.index[-1], |
555
|
|
|
max_date) |
556
|
|
|
|