| Total Complexity | 63 |
| Total Lines | 355 |
| Duplicated Lines | 0 % |
Complex classes like zipline.gens.AlgorithmSimulator often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | # |
||
| 33 | class AlgorithmSimulator(object): |
||
| 34 | |||
| 35 | EMISSION_TO_PERF_KEY_MAP = { |
||
| 36 | 'minute': 'minute_perf', |
||
| 37 | 'daily': 'daily_perf' |
||
| 38 | } |
||
| 39 | |||
| 40 | def __init__(self, algo, sim_params): |
||
| 41 | |||
| 42 | # ============== |
||
| 43 | # Simulation |
||
| 44 | # Param Setup |
||
| 45 | # ============== |
||
| 46 | self.sim_params = sim_params |
||
| 47 | |||
| 48 | # ============== |
||
| 49 | # Algo Setup |
||
| 50 | # ============== |
||
| 51 | self.algo = algo |
||
| 52 | self.algo_start = normalize_date(self.sim_params.first_open) |
||
| 53 | self.env = algo.trading_environment |
||
| 54 | |||
| 55 | # ============== |
||
| 56 | # Snapshot Setup |
||
| 57 | # ============== |
||
| 58 | |||
| 59 | # The algorithm's data as of our most recent event. |
||
| 60 | # We want an object that will have empty objects as default |
||
| 61 | # values on missing keys. |
||
| 62 | self.current_data = BarData() |
||
| 63 | |||
| 64 | # We don't have a datetime for the current snapshot until we |
||
| 65 | # receive a message. |
||
| 66 | self.simulation_dt = None |
||
| 67 | |||
| 68 | # ============= |
||
| 69 | # Logging Setup |
||
| 70 | # ============= |
||
| 71 | |||
| 72 | # Processor function for injecting the algo_dt into |
||
| 73 | # user prints/logs. |
||
| 74 | def inject_algo_dt(record): |
||
| 75 | if 'algo_dt' not in record.extra: |
||
| 76 | record.extra['algo_dt'] = self.simulation_dt |
||
| 77 | self.processor = Processor(inject_algo_dt) |
||
| 78 | |||
| 79 | def transform(self, stream_in): |
||
| 80 | """ |
||
| 81 | Main generator work loop. |
||
| 82 | """ |
||
| 83 | # Initialize the mkt_close |
||
| 84 | mkt_open = self.algo.perf_tracker.market_open |
||
| 85 | mkt_close = self.algo.perf_tracker.market_close |
||
| 86 | |||
| 87 | # inject the current algo |
||
| 88 | # snapshot time to any log record generated. |
||
| 89 | |||
| 90 | with ExitStack() as stack: |
||
| 91 | stack.enter_context(self.processor) |
||
| 92 | stack.enter_context(ZiplineAPI(self.algo)) |
||
| 93 | |||
| 94 | data_frequency = self.sim_params.data_frequency |
||
| 95 | |||
| 96 | self._call_before_trading_start(mkt_open) |
||
| 97 | |||
| 98 | for date, snapshot in stream_in: |
||
| 99 | |||
| 100 | self.simulation_dt = date |
||
| 101 | self.on_dt_changed(date) |
||
| 102 | |||
| 103 | # If we're still in the warmup period. Use the event to |
||
| 104 | # update our universe, but don't yield any perf messages, |
||
| 105 | # and don't send a snapshot to handle_data. |
||
| 106 | if date < self.algo_start: |
||
| 107 | for event in snapshot: |
||
| 108 | if event.type == DATASOURCE_TYPE.SPLIT: |
||
| 109 | self.algo.blotter.process_split(event) |
||
| 110 | |||
| 111 | elif event.type == DATASOURCE_TYPE.TRADE: |
||
| 112 | self.update_universe(event) |
||
| 113 | self.algo.perf_tracker.process_trade(event) |
||
| 114 | elif event.type == DATASOURCE_TYPE.CUSTOM: |
||
| 115 | self.update_universe(event) |
||
| 116 | |||
| 117 | else: |
||
| 118 | messages = self._process_snapshot( |
||
| 119 | date, |
||
| 120 | snapshot, |
||
| 121 | self.algo.instant_fill, |
||
| 122 | ) |
||
| 123 | # Perf messages are only emitted if the snapshot contained |
||
| 124 | # a benchmark event. |
||
| 125 | for message in messages: |
||
| 126 | yield message |
||
| 127 | |||
| 128 | # When emitting minutely, we need to call |
||
| 129 | # before_trading_start before the next trading day begins |
||
| 130 | if date == mkt_close: |
||
| 131 | if mkt_close <= self.algo.perf_tracker.last_close: |
||
| 132 | before_last_close = \ |
||
| 133 | mkt_close < self.algo.perf_tracker.last_close |
||
| 134 | try: |
||
| 135 | mkt_open, mkt_close = \ |
||
| 136 | self.env.next_open_and_close(mkt_close) |
||
| 137 | |||
| 138 | except NoFurtherDataError: |
||
| 139 | # If at the end of backtest history, |
||
| 140 | # skip advancing market close. |
||
| 141 | pass |
||
| 142 | |||
| 143 | if before_last_close: |
||
| 144 | self._call_before_trading_start(mkt_open) |
||
| 145 | |||
| 146 | elif data_frequency == 'daily': |
||
| 147 | next_day = self.env.next_trading_day(date) |
||
| 148 | |||
| 149 | if next_day is not None and \ |
||
| 150 | next_day < self.algo.perf_tracker.last_close: |
||
| 151 | self._call_before_trading_start(next_day) |
||
| 152 | |||
| 153 | self.algo.portfolio_needs_update = True |
||
| 154 | self.algo.account_needs_update = True |
||
| 155 | self.algo.performance_needs_update = True |
||
| 156 | |||
| 157 | risk_message = self.algo.perf_tracker.handle_simulation_end() |
||
| 158 | yield risk_message |
||
| 159 | |||
| 160 | def _process_snapshot(self, dt, snapshot, instant_fill): |
||
| 161 | """ |
||
| 162 | Process a stream of events corresponding to a single datetime, possibly |
||
| 163 | returning a perf message to be yielded. |
||
| 164 | |||
| 165 | If @instant_fill = True, we delay processing of events until after the |
||
| 166 | user's call to handle_data, and we process the user's placed orders |
||
| 167 | before the snapshot's events. Note that this introduces a lookahead |
||
| 168 | bias, since the user effectively is effectively placing orders that are |
||
| 169 | filled based on trades that happened prior to the call the handle_data. |
||
| 170 | |||
| 171 | If @instant_fill = False, we process Trade events before calling |
||
| 172 | handle_data. This means that orders are filled based on trades |
||
| 173 | occurring in the next snapshot. This is the more conservative model, |
||
| 174 | and as such it is the default behavior in TradingAlgorithm. |
||
| 175 | """ |
||
| 176 | |||
| 177 | # Flags indicating whether we saw any events of type TRADE and type |
||
| 178 | # BENCHMARK. Respectively, these control whether or not handle_data is |
||
| 179 | # called for this snapshot and whether we emit a perf message for this |
||
| 180 | # snapshot. |
||
| 181 | any_trade_occurred = False |
||
| 182 | benchmark_event_occurred = False |
||
| 183 | |||
| 184 | if instant_fill: |
||
| 185 | events_to_be_processed = [] |
||
| 186 | |||
| 187 | # Assign process events to variables to avoid attribute access in |
||
| 188 | # innermost loops. |
||
| 189 | # |
||
| 190 | # Done here, to allow for perf_tracker or blotter to be swapped out |
||
| 191 | # or changed in between snapshots. |
||
| 192 | perf_process_trade = self.algo.perf_tracker.process_trade |
||
| 193 | perf_process_transaction = self.algo.perf_tracker.process_transaction |
||
| 194 | perf_process_order = self.algo.perf_tracker.process_order |
||
| 195 | perf_process_benchmark = self.algo.perf_tracker.process_benchmark |
||
| 196 | perf_process_split = self.algo.perf_tracker.process_split |
||
| 197 | perf_process_dividend = self.algo.perf_tracker.process_dividend |
||
| 198 | perf_process_commission = self.algo.perf_tracker.process_commission |
||
| 199 | perf_process_close_position = \ |
||
| 200 | self.algo.perf_tracker.process_close_position |
||
| 201 | blotter_process_trade = self.algo.blotter.process_trade |
||
| 202 | blotter_process_benchmark = self.algo.blotter.process_benchmark |
||
| 203 | |||
| 204 | # Containers for the snapshotted events, so that the events are |
||
| 205 | # processed in a predictable order, without relying on the sorted order |
||
| 206 | # of the individual sources. |
||
| 207 | |||
| 208 | # There is only one benchmark per snapshot, will be set to the current |
||
| 209 | # benchmark iff it occurs. |
||
| 210 | benchmark = None |
||
| 211 | # trades and customs are initialized as a list since process_snapshot |
||
| 212 | # is most often called on market bars, which could contain trades or |
||
| 213 | # custom events. |
||
| 214 | trades = [] |
||
| 215 | customs = [] |
||
| 216 | closes = [] |
||
| 217 | |||
| 218 | # splits and dividends are processed once a day. |
||
| 219 | # |
||
| 220 | # The avoidance of creating the list every time this is called is more |
||
| 221 | # to attempt to show that this is the infrequent case of the method, |
||
| 222 | # since the performance benefit from deferring the list allocation is |
||
| 223 | # marginal. splits list will be allocated when a split occurs in the |
||
| 224 | # snapshot. |
||
| 225 | splits = None |
||
| 226 | # dividends list will be allocated when a dividend occurs in the |
||
| 227 | # snapshot. |
||
| 228 | dividends = None |
||
| 229 | |||
| 230 | for event in snapshot: |
||
| 231 | if event.type == DATASOURCE_TYPE.TRADE: |
||
| 232 | trades.append(event) |
||
| 233 | elif event.type == DATASOURCE_TYPE.BENCHMARK: |
||
| 234 | benchmark = event |
||
| 235 | elif event.type == DATASOURCE_TYPE.SPLIT: |
||
| 236 | if splits is None: |
||
| 237 | splits = [] |
||
| 238 | splits.append(event) |
||
| 239 | elif event.type == DATASOURCE_TYPE.CUSTOM: |
||
| 240 | customs.append(event) |
||
| 241 | elif event.type == DATASOURCE_TYPE.DIVIDEND: |
||
| 242 | if dividends is None: |
||
| 243 | dividends = [] |
||
| 244 | dividends.append(event) |
||
| 245 | elif event.type == DATASOURCE_TYPE.CLOSE_POSITION: |
||
| 246 | closes.append(event) |
||
| 247 | else: |
||
| 248 | raise log.warn("Unrecognized event=%s".format(event)) |
||
| 249 | |||
| 250 | # Handle benchmark first. |
||
| 251 | # |
||
| 252 | # Internal broker implementation depends on the benchmark being |
||
| 253 | # processed first so that transactions and commissions reported from |
||
| 254 | # the broker can be injected. |
||
| 255 | if benchmark is not None: |
||
| 256 | benchmark_event_occurred = True |
||
| 257 | perf_process_benchmark(benchmark) |
||
| 258 | for txn, order in blotter_process_benchmark(benchmark): |
||
| 259 | if txn.type == DATASOURCE_TYPE.TRANSACTION: |
||
| 260 | perf_process_transaction(txn) |
||
| 261 | elif txn.type == DATASOURCE_TYPE.COMMISSION: |
||
| 262 | perf_process_commission(txn) |
||
| 263 | perf_process_order(order) |
||
| 264 | |||
| 265 | for trade in trades: |
||
| 266 | self.update_universe(trade) |
||
| 267 | any_trade_occurred = True |
||
| 268 | if instant_fill: |
||
| 269 | events_to_be_processed.append(trade) |
||
| 270 | else: |
||
| 271 | for txn, order in blotter_process_trade(trade): |
||
| 272 | if txn.type == DATASOURCE_TYPE.TRANSACTION: |
||
| 273 | perf_process_transaction(txn) |
||
| 274 | elif txn.type == DATASOURCE_TYPE.COMMISSION: |
||
| 275 | perf_process_commission(txn) |
||
| 276 | perf_process_order(order) |
||
| 277 | perf_process_trade(trade) |
||
| 278 | |||
| 279 | for custom in customs: |
||
| 280 | self.update_universe(custom) |
||
| 281 | |||
| 282 | for close in closes: |
||
| 283 | self.update_universe(close) |
||
| 284 | perf_process_close_position(close) |
||
| 285 | |||
| 286 | if splits is not None: |
||
| 287 | for split in splits: |
||
| 288 | # process_split is not assigned to a variable since it is |
||
| 289 | # called rarely compared to the other event processors. |
||
| 290 | self.algo.blotter.process_split(split) |
||
| 291 | perf_process_split(split) |
||
| 292 | |||
| 293 | if dividends is not None: |
||
| 294 | for dividend in dividends: |
||
| 295 | perf_process_dividend(dividend) |
||
| 296 | |||
| 297 | if any_trade_occurred: |
||
| 298 | new_orders = self._call_handle_data() |
||
| 299 | for order in new_orders: |
||
| 300 | perf_process_order(order) |
||
| 301 | |||
| 302 | if instant_fill: |
||
| 303 | # Now that handle_data has been called and orders have been placed, |
||
| 304 | # process the event stream to fill user orders based on the events |
||
| 305 | # from this snapshot. |
||
| 306 | for trade in events_to_be_processed: |
||
| 307 | for txn, order in blotter_process_trade(trade): |
||
| 308 | if txn is not None: |
||
| 309 | perf_process_transaction(txn) |
||
| 310 | if order is not None: |
||
| 311 | perf_process_order(order) |
||
| 312 | perf_process_trade(trade) |
||
| 313 | |||
| 314 | if benchmark_event_occurred: |
||
| 315 | return self.generate_messages(dt) |
||
| 316 | else: |
||
| 317 | return () |
||
| 318 | |||
| 319 | def _call_handle_data(self): |
||
| 320 | """ |
||
| 321 | Call the user's handle_data, returning any orders placed by the algo |
||
| 322 | during the call. |
||
| 323 | """ |
||
| 324 | self.algo.event_manager.handle_data( |
||
| 325 | self.algo, |
||
| 326 | self.current_data, |
||
| 327 | self.simulation_dt, |
||
| 328 | ) |
||
| 329 | orders = self.algo.blotter.new_orders |
||
| 330 | self.algo.blotter.new_orders = [] |
||
| 331 | return orders |
||
| 332 | |||
| 333 | def _call_before_trading_start(self, dt): |
||
| 334 | dt = normalize_date(dt) |
||
| 335 | self.simulation_dt = dt |
||
| 336 | self.on_dt_changed(dt) |
||
| 337 | self.algo.before_trading_start(self.current_data) |
||
| 338 | |||
| 339 | def on_dt_changed(self, dt): |
||
| 340 | if self.algo.datetime != dt: |
||
| 341 | self.algo.on_dt_changed(dt) |
||
| 342 | |||
| 343 | def generate_messages(self, dt): |
||
| 344 | """ |
||
| 345 | Generator that yields perf messages for the given datetime. |
||
| 346 | """ |
||
| 347 | # Ensure that updated_portfolio has been called at least once for this |
||
| 348 | # dt before we emit a perf message. This is a no-op if |
||
| 349 | # updated_portfolio has already been called this dt. |
||
| 350 | self.algo.updated_portfolio() |
||
| 351 | self.algo.updated_account() |
||
| 352 | |||
| 353 | rvars = self.algo.recorded_vars |
||
| 354 | if self.algo.perf_tracker.emission_rate == 'daily': |
||
| 355 | perf_message = \ |
||
| 356 | self.algo.perf_tracker.handle_market_close_daily() |
||
| 357 | perf_message['daily_perf']['recorded_vars'] = rvars |
||
| 358 | yield perf_message |
||
| 359 | |||
| 360 | elif self.algo.perf_tracker.emission_rate == 'minute': |
||
| 361 | # close the minute in the tracker, and collect the daily message if |
||
| 362 | # the minute is the close of the trading day |
||
| 363 | minute_message, daily_message = \ |
||
| 364 | self.algo.perf_tracker.handle_minute_close(dt) |
||
| 365 | |||
| 366 | # collect and yield the minute's perf message |
||
| 367 | minute_message['minute_perf']['recorded_vars'] = rvars |
||
| 368 | yield minute_message |
||
| 369 | |||
| 370 | # if there was a daily perf message, collect and yield it |
||
| 371 | if daily_message: |
||
| 372 | daily_message['daily_perf']['recorded_vars'] = rvars |
||
| 373 | yield daily_message |
||
| 374 | |||
| 375 | def update_universe(self, event): |
||
| 376 | """ |
||
| 377 | Update the universe with new event information. |
||
| 378 | """ |
||
| 379 | # Update our knowledge of this event's sid |
||
| 380 | # rather than use if event.sid in ..., just trying |
||
| 381 | # and handling the exception is significantly faster |
||
| 382 | try: |
||
| 383 | sid_data = self.current_data[event.sid] |
||
| 384 | except KeyError: |
||
| 385 | sid_data = self.current_data[event.sid] = SIDData(event.sid) |
||
| 386 | |||
| 387 | sid_data.__dict__.update(event.__dict__) |
||
| 388 |