|
1
|
|
|
# pylint: skip-file |
|
|
|
|
|
|
2
|
|
|
from functools import partial |
|
3
|
|
|
import numpy as np |
|
4
|
|
|
|
|
5
|
|
|
def _obj_wrapper(func, args, kwargs, x): |
|
6
|
|
|
return func(x, *args, **kwargs) |
|
7
|
|
|
|
|
8
|
|
|
def _is_feasible_wrapper(func, x): |
|
9
|
|
|
return np.all(func(x)>=0) |
|
10
|
|
|
|
|
11
|
|
|
def _cons_none_wrapper(x): |
|
12
|
|
|
return np.array([0]) |
|
13
|
|
|
|
|
14
|
|
|
def _cons_ieqcons_wrapper(ieqcons, args, kwargs, x): |
|
15
|
|
|
return np.array([y(x, *args, **kwargs) for y in ieqcons]) |
|
16
|
|
|
|
|
17
|
|
|
def _cons_f_ieqcons_wrapper(f_ieqcons, args, kwargs, x): |
|
18
|
|
|
return np.array(f_ieqcons(x, *args, **kwargs)) |
|
19
|
|
|
|
|
20
|
|
|
def pso(func, lb, ub, ieqcons=[], f_ieqcons=None, args=(), kwargs={}, |
|
21
|
|
|
swarmsize=100, omega=0.5, phip=0.5, phig=0.5, maxiter=100, |
|
22
|
|
|
minstep=1e-8, minfunc=1e-8, debug=False, processes=1, |
|
23
|
|
|
particle_output=False): |
|
24
|
|
|
""" |
|
25
|
|
|
Perform a particle swarm optimization (PSO) |
|
26
|
|
|
|
|
27
|
|
|
Parameters |
|
28
|
|
|
========== |
|
29
|
|
|
func : function |
|
30
|
|
|
The function to be minimized |
|
31
|
|
|
lb : array |
|
32
|
|
|
The lower bounds of the design variable(s) |
|
33
|
|
|
ub : array |
|
34
|
|
|
The upper bounds of the design variable(s) |
|
35
|
|
|
|
|
36
|
|
|
Optional |
|
37
|
|
|
======== |
|
38
|
|
|
ieqcons : list |
|
39
|
|
|
A list of functions of length n such that ieqcons[j](x,*args) >= 0.0 in |
|
40
|
|
|
a successfully optimized problem (Default: []) |
|
41
|
|
|
f_ieqcons : function |
|
42
|
|
|
Returns a 1-D array in which each element must be greater or equal |
|
43
|
|
|
to 0.0 in a successfully optimized problem. If f_ieqcons is specified, |
|
44
|
|
|
ieqcons is ignored (Default: None) |
|
45
|
|
|
args : tuple |
|
46
|
|
|
Additional arguments passed to objective and constraint functions |
|
47
|
|
|
(Default: empty tuple) |
|
48
|
|
|
kwargs : dict |
|
49
|
|
|
Additional keyword arguments passed to objective and constraint |
|
50
|
|
|
functions (Default: empty dict) |
|
51
|
|
|
swarmsize : int |
|
52
|
|
|
The number of particles in the swarm (Default: 100) |
|
53
|
|
|
omega : scalar |
|
54
|
|
|
Particle velocity scaling factor (Default: 0.5) |
|
55
|
|
|
phip : scalar |
|
56
|
|
|
Scaling factor to search away from the particle's best known position |
|
57
|
|
|
(Default: 0.5) |
|
58
|
|
|
phig : scalar |
|
59
|
|
|
Scaling factor to search away from the swarm's best known position |
|
60
|
|
|
(Default: 0.5) |
|
61
|
|
|
maxiter : int |
|
62
|
|
|
The maximum number of iterations for the swarm to search (Default: 100) |
|
63
|
|
|
minstep : scalar |
|
64
|
|
|
The minimum stepsize of swarm's best position before the search |
|
65
|
|
|
terminates (Default: 1e-8) |
|
66
|
|
|
minfunc : scalar |
|
67
|
|
|
The minimum change of swarm's best objective value before the search |
|
68
|
|
|
terminates (Default: 1e-8) |
|
69
|
|
|
debug : boolean |
|
70
|
|
|
If True, progress statements will be displayed every iteration |
|
71
|
|
|
(Default: False) |
|
72
|
|
|
processes : int |
|
73
|
|
|
The number of processes to use to evaluate objective function and |
|
74
|
|
|
constraints (default: 1) |
|
75
|
|
|
particle_output : boolean |
|
76
|
|
|
Whether to include the best per-particle position and the objective |
|
77
|
|
|
values at those. |
|
78
|
|
|
|
|
79
|
|
|
Returns |
|
80
|
|
|
======= |
|
81
|
|
|
g : array |
|
82
|
|
|
The swarm's best known position (optimal design) |
|
83
|
|
|
f : scalar |
|
84
|
|
|
The objective value at ``g`` |
|
85
|
|
|
p : array |
|
86
|
|
|
The best known position per particle |
|
87
|
|
|
pf: arrray |
|
88
|
|
|
The objective values at each position in p |
|
89
|
|
|
|
|
90
|
|
|
""" |
|
91
|
|
|
|
|
92
|
|
|
assert len(lb)==len(ub), 'Lower- and upper-bounds must be the same length' |
|
93
|
|
|
assert hasattr(func, '__call__'), 'Invalid function handle' |
|
94
|
|
|
lb = np.array(lb) |
|
95
|
|
|
ub = np.array(ub) |
|
96
|
|
|
assert np.all(ub>lb), 'All upper-bound values must be greater than lower-bound values' |
|
97
|
|
|
|
|
98
|
|
|
vhigh = np.abs(ub - lb) |
|
99
|
|
|
vlow = -vhigh |
|
100
|
|
|
|
|
101
|
|
|
# Initialize objective function |
|
102
|
|
|
obj = partial(_obj_wrapper, func, args, kwargs) |
|
103
|
|
|
|
|
104
|
|
|
# Check for constraint function(s) ######################################### |
|
105
|
|
|
if f_ieqcons is None: |
|
106
|
|
|
if not len(ieqcons): |
|
107
|
|
|
if debug: |
|
108
|
|
|
print('No constraints given.') |
|
109
|
|
|
cons = _cons_none_wrapper |
|
110
|
|
|
else: |
|
111
|
|
|
if debug: |
|
112
|
|
|
print('Converting ieqcons to a single constraint function') |
|
113
|
|
|
cons = partial(_cons_ieqcons_wrapper, ieqcons, args, kwargs) |
|
114
|
|
|
else: |
|
115
|
|
|
if debug: |
|
116
|
|
|
print('Single constraint function given in f_ieqcons') |
|
117
|
|
|
cons = partial(_cons_f_ieqcons_wrapper, f_ieqcons, args, kwargs) |
|
118
|
|
|
is_feasible = partial(_is_feasible_wrapper, cons) |
|
119
|
|
|
|
|
120
|
|
|
# Initialize the multiprocessing module if necessary |
|
121
|
|
|
if processes > 1: |
|
122
|
|
|
import multiprocessing |
|
123
|
|
|
mp_pool = multiprocessing.Pool(processes) |
|
124
|
|
|
|
|
125
|
|
|
# Initialize the particle swarm ############################################ |
|
126
|
|
|
S = swarmsize |
|
127
|
|
|
D = len(lb) # the number of dimensions each particle has |
|
128
|
|
|
x = np.random.rand(S, D) # particle positions |
|
129
|
|
|
v = np.zeros_like(x) # particle velocities |
|
130
|
|
|
p = np.zeros_like(x) # best particle positions |
|
131
|
|
|
fx = np.zeros(S) # current particle function values |
|
132
|
|
|
fs = np.zeros(S, dtype=bool) # feasibility of each particle |
|
133
|
|
|
fp = np.ones(S)*np.inf # best particle function values |
|
134
|
|
|
g = [] # best swarm position |
|
135
|
|
|
fg = np.inf # best swarm position starting value |
|
136
|
|
|
|
|
137
|
|
|
# Initialize the particle's position |
|
138
|
|
|
x = lb + x*(ub - lb) |
|
139
|
|
|
|
|
140
|
|
|
# Calculate objective and constraints for each particle |
|
141
|
|
|
if processes > 1: |
|
|
|
|
|
|
142
|
|
|
fx = np.array(mp_pool.map(obj, x)) |
|
143
|
|
|
fs = np.array(mp_pool.map(is_feasible, x)) |
|
144
|
|
|
else: |
|
145
|
|
|
for i in range(S): |
|
146
|
|
|
fx[i] = obj(x[i, :]) |
|
147
|
|
|
fs[i] = is_feasible(x[i, :]) |
|
148
|
|
|
|
|
149
|
|
|
# Store particle's best position (if constraints are satisfied) |
|
150
|
|
|
i_update = np.logical_and((fx < fp), fs) |
|
151
|
|
|
p[i_update, :] = x[i_update, :].copy() |
|
152
|
|
|
fp[i_update] = fx[i_update] |
|
153
|
|
|
|
|
154
|
|
|
# Update swarm's best position |
|
155
|
|
|
i_min = np.argmin(fp) |
|
156
|
|
|
if fp[i_min] < fg: |
|
157
|
|
|
fg = fp[i_min] |
|
158
|
|
|
g = p[i_min, :].copy() |
|
159
|
|
|
else: |
|
160
|
|
|
# At the start, there may not be any feasible starting point, so just |
|
161
|
|
|
# give it a temporary "best" point since it's likely to change |
|
162
|
|
|
g = x[0, :].copy() |
|
163
|
|
|
|
|
164
|
|
|
# Initialize the particle's velocity |
|
165
|
|
|
v = vlow + np.random.rand(S, D)*(vhigh - vlow) |
|
166
|
|
|
|
|
167
|
|
|
# Iterate until termination criterion met ################################## |
|
168
|
|
|
it = 1 |
|
169
|
|
|
while it <= maxiter: |
|
170
|
|
|
rp = np.random.uniform(size=(S, D)) |
|
171
|
|
|
rg = np.random.uniform(size=(S, D)) |
|
172
|
|
|
|
|
173
|
|
|
# Update the particles velocities |
|
174
|
|
|
v = omega*v + phip*rp*(p - x) + phig*rg*(g - x) |
|
175
|
|
|
# Update the particles' positions |
|
176
|
|
|
x = x + v |
|
177
|
|
|
# Correct for bound violations |
|
178
|
|
|
maskl = x < lb |
|
179
|
|
|
masku = x > ub |
|
180
|
|
|
x = x*(~np.logical_or(maskl, masku)) + lb*maskl + ub*masku |
|
181
|
|
|
|
|
182
|
|
|
# Update objectives and constraints |
|
183
|
|
|
if processes > 1: |
|
|
|
|
|
|
184
|
|
|
fx = np.array(mp_pool.map(obj, x)) |
|
185
|
|
|
fs = np.array(mp_pool.map(is_feasible, x)) |
|
186
|
|
|
else: |
|
187
|
|
|
for i in range(S): |
|
188
|
|
|
fx[i] = obj(x[i, :]) |
|
189
|
|
|
fs[i] = is_feasible(x[i, :]) |
|
190
|
|
|
|
|
191
|
|
|
# Store particle's best position (if constraints are satisfied) |
|
192
|
|
|
i_update = np.logical_and((fx < fp), fs) |
|
193
|
|
|
p[i_update, :] = x[i_update, :].copy() |
|
194
|
|
|
fp[i_update] = fx[i_update] |
|
195
|
|
|
|
|
196
|
|
|
# Compare swarm's best position with global best position |
|
197
|
|
|
i_min = np.argmin(fp) |
|
198
|
|
|
if fp[i_min] < fg: |
|
199
|
|
|
if debug: |
|
200
|
|
|
print('New best for swarm at iteration {:}: {:} {:}'\ |
|
201
|
|
|
.format(it, p[i_min, :], fp[i_min])) |
|
202
|
|
|
|
|
203
|
|
|
p_min = p[i_min, :].copy() |
|
204
|
|
|
stepsize = np.sqrt(np.sum((g - p_min)**2)) |
|
205
|
|
|
|
|
206
|
|
|
if np.abs(fg - fp[i_min]) <= minfunc: |
|
207
|
|
|
print('Stopping search: Swarm best objective change less than {:}'\ |
|
208
|
|
|
.format(minfunc)) |
|
209
|
|
|
if particle_output: |
|
210
|
|
|
return p_min, fp[i_min], p, fp |
|
211
|
|
|
else: |
|
212
|
|
|
return p_min, fp[i_min] |
|
213
|
|
|
elif stepsize <= minstep: |
|
214
|
|
|
print('Stopping search: Swarm best position change less than {:}'\ |
|
215
|
|
|
.format(minstep)) |
|
216
|
|
|
if particle_output: |
|
217
|
|
|
return p_min, fp[i_min], p, fp |
|
218
|
|
|
else: |
|
219
|
|
|
return p_min, fp[i_min] |
|
220
|
|
|
else: |
|
221
|
|
|
g = p_min.copy() |
|
222
|
|
|
fg = fp[i_min] |
|
223
|
|
|
|
|
224
|
|
|
if debug: |
|
225
|
|
|
print('Best after iteration {:}: {:} {:}'.format(it, g, fg)) |
|
226
|
|
|
it += 1 |
|
227
|
|
|
|
|
228
|
|
|
print('Stopping search: maximum iterations reached --> {:}'.format(maxiter)) |
|
229
|
|
|
|
|
230
|
|
|
if not is_feasible(g): |
|
231
|
|
|
print("However, the optimization couldn't find a feasible design. Sorry") |
|
232
|
|
|
if particle_output: |
|
233
|
|
|
return g, fg, p, fp |
|
234
|
|
|
else: |
|
235
|
|
|
return g, fg |