|
1
|
|
|
"""This test is checking that algorithm with grouping is working correctly.""" |
|
2
|
|
|
# pylint: disable=too-many-instance-attributes,too-many-arguments |
|
|
|
|
|
|
3
|
|
|
# pylint: disable=signature-differs,arguments-differ |
|
|
|
|
|
|
4
|
|
|
|
|
5
|
|
|
import unittest.mock as mock |
|
6
|
|
|
from unittest import TestCase |
|
7
|
|
|
|
|
8
|
|
|
from grortir.main.model.core.abstract_process import AbstractProcess |
|
9
|
|
|
from grortir.main.optimizers.grouped_optimizer import GroupedOptimizer |
|
10
|
|
|
from grortir.main.optimizers.grouping_strategy import GroupingStrategy |
|
11
|
|
|
from grortir.main.model.core.abstract_stage import AbstractStage |
|
12
|
|
|
from grortir.main.pso.calls_optimization_strategy import \ |
|
13
|
|
|
CallsOptimizationStrategy |
|
14
|
|
|
from grortir.main.pso.pso_algorithm import PsoAlgorithm |
|
15
|
|
|
from tests.framework.calls.calls_registry import CallsRegistry |
|
16
|
|
|
from tests.framework.calls.input_validator import InputValidator |
|
17
|
|
|
|
|
18
|
|
|
|
|
19
|
|
|
class TestGroupedOptimizer(TestCase): |
|
20
|
|
|
"""Class for testing Optimizer.""" |
|
21
|
|
|
|
|
22
|
|
|
def setUp(self): |
|
23
|
|
|
"""Set up environment.""" |
|
24
|
|
|
self.some_process = AbstractProcess() |
|
25
|
|
|
self.first_stage = AbstractStage() |
|
26
|
|
|
self.second_stage = AbstractStage() |
|
27
|
|
|
self.third_stage_a = mock.Mock() |
|
28
|
|
|
self.third_stage_b = mock.Mock() |
|
29
|
|
|
self.some_process.add_path([self.first_stage, self.second_stage, |
|
|
|
|
|
|
30
|
|
|
self.third_stage_a]) |
|
31
|
|
|
self.some_process.add_edge(self.second_stage, self.third_stage_b) |
|
|
|
|
|
|
32
|
|
|
|
|
33
|
|
|
def test___init__(self): |
|
34
|
|
|
"""Testing creating object.""" |
|
35
|
|
|
optimizer = GroupedOptimizer(self.some_process, mock.Mock(), |
|
36
|
|
|
mock.Mock()) |
|
37
|
|
|
self.assertIsNotNone(optimizer) |
|
38
|
|
|
self.assertEqual(optimizer.process, self.some_process) |
|
39
|
|
|
|
|
40
|
|
|
def test_calling_functions(self): |
|
41
|
|
|
"""Test correct order of calling function.""" |
|
42
|
|
|
optimizer = GroupedOptimizer(TESTED_PROCESS, GROUPING_STRATEGY, |
|
43
|
|
|
PSO_ALGORITHM) |
|
44
|
|
|
optimizer.optimize_process() |
|
45
|
|
|
input_validator = InputValidator(CALLS_REGISTRY) |
|
46
|
|
|
is_valid = input_validator.validate_input(GROUPING_STRATEGY, |
|
47
|
|
|
TESTED_PROCESS) |
|
48
|
|
|
self.assertTrue(is_valid) |
|
49
|
|
|
|
|
50
|
|
|
|
|
51
|
|
|
CALLS_REGISTRY = CallsRegistry() |
|
52
|
|
|
|
|
53
|
|
|
|
|
54
|
|
|
class DeterministicStage(AbstractStage): |
|
|
|
|
|
|
55
|
|
|
def __init__(self, name, max_get_output_of_stage_count=10, |
|
56
|
|
|
max_is_enough_quality_count=10, |
|
57
|
|
|
max_could_be_optimized_count=10, max_get_quality_count=10, |
|
58
|
|
|
max_get_cost_count=10): |
|
59
|
|
|
super().__init__((0, 0, 0, 0)) |
|
60
|
|
|
self.name = name |
|
61
|
|
|
self.get_cost_count = 0 |
|
62
|
|
|
self.get_quality_count = 0 |
|
63
|
|
|
self.could_be_optimized_count = 0 |
|
64
|
|
|
self.is_enough_quality_count = 0 |
|
65
|
|
|
self.get_output_of_stage_count = 0 |
|
66
|
|
|
self.get_maximal_acceptable_cost_count = 0 |
|
|
|
|
|
|
67
|
|
|
self.maximum_acceptable_quality = 1 |
|
68
|
|
|
self.maximal_acceptable_cost = 100 |
|
69
|
|
|
self.max_get_cost_count = max_get_cost_count |
|
70
|
|
|
self.max_get_quality_count = max_get_quality_count |
|
71
|
|
|
self.max_could_be_optimized_count = max_could_be_optimized_count |
|
72
|
|
|
self.max_is_enough_quality_count = max_is_enough_quality_count |
|
73
|
|
|
self.max_get_output_of_stage_count = max_get_output_of_stage_count |
|
74
|
|
|
CALLS_REGISTRY.add_call(self.name, '__init__', |
|
75
|
|
|
[name, max_get_output_of_stage_count, |
|
76
|
|
|
max_is_enough_quality_count, |
|
77
|
|
|
max_could_be_optimized_count, |
|
78
|
|
|
max_get_quality_count, |
|
79
|
|
|
max_get_cost_count], None, 1) |
|
80
|
|
|
|
|
81
|
|
|
def get_cost(self): |
|
82
|
|
|
self.get_cost_count += 1 |
|
83
|
|
|
CALLS_REGISTRY.add_call(self.name, "get_cost", [], self.get_cost_count, |
|
84
|
|
|
self.get_cost_count) |
|
85
|
|
|
return self.get_cost_count |
|
86
|
|
|
|
|
87
|
|
|
def get_quality(self, input_vector, control_params=None): |
|
88
|
|
|
self.get_quality_count += 1 |
|
89
|
|
|
result = 0.1 if self.get_quality_count > int(self.name) else 1000 |
|
90
|
|
|
CALLS_REGISTRY.add_call(self.name, "get_quality", |
|
91
|
|
|
[input_vector, control_params], result, |
|
92
|
|
|
self.get_quality_count) |
|
93
|
|
|
return result |
|
94
|
|
|
|
|
95
|
|
|
def could_be_optimized(self): |
|
96
|
|
|
self.could_be_optimized_count += 1 |
|
97
|
|
|
CALLS_REGISTRY.add_call(self.name, "could_be_optimized", [], True, |
|
98
|
|
|
self.could_be_optimized_count) |
|
99
|
|
|
return True |
|
100
|
|
|
|
|
101
|
|
|
def is_enough_quality(self, value): |
|
102
|
|
|
self.is_enough_quality_count += 1 |
|
103
|
|
|
result = value < 1 |
|
104
|
|
|
CALLS_REGISTRY.add_call(self.name, "is_enough_quality", [value], result, |
|
105
|
|
|
self.is_enough_quality_count) |
|
106
|
|
|
return result |
|
107
|
|
|
|
|
108
|
|
|
def get_output_of_stage(self, input_vector, control_params): |
|
109
|
|
|
self.get_output_of_stage_count += 1 |
|
110
|
|
|
output = [self.get_output_of_stage_count] * len(input_vector) |
|
111
|
|
|
output[0] = int(self.name) |
|
112
|
|
|
CALLS_REGISTRY.add_call(self.name, "get_output_of_stage", |
|
113
|
|
|
[input_vector, control_params], output, |
|
114
|
|
|
self.get_output_of_stage_count) |
|
115
|
|
|
return output |
|
116
|
|
|
|
|
117
|
|
|
def get_maximal_acceptable_cost(self): |
|
118
|
|
|
self.get_maximal_acceptable_cost_count += 1 |
|
119
|
|
|
CALLS_REGISTRY.add_call(self.name, "get_maximal_acceptable_cost", |
|
120
|
|
|
[], self.maximal_acceptable_cost, |
|
121
|
|
|
self.get_output_of_stage_count) |
|
122
|
|
|
return self.maximal_acceptable_cost |
|
123
|
|
|
|
|
124
|
|
|
|
|
125
|
|
|
class ExampleProcess(AbstractProcess): |
|
|
|
|
|
|
126
|
|
|
pass |
|
127
|
|
|
|
|
128
|
|
|
|
|
129
|
|
|
TESTED_PROCESS = ExampleProcess() |
|
130
|
|
|
stages = {} |
|
|
|
|
|
|
131
|
|
|
for i in range(7): |
|
132
|
|
|
stages[i] = DeterministicStage(str(i)) |
|
133
|
|
|
|
|
134
|
|
|
# Our graph: |
|
135
|
|
|
# 0 |
|
136
|
|
|
# | |
|
137
|
|
|
# 1 |
|
138
|
|
|
# |\ |
|
139
|
|
|
# 2 4 |
|
140
|
|
|
# | |\ |
|
141
|
|
|
# 3 5 6 |
|
142
|
|
|
# All edges directed to down |
|
143
|
|
|
# Order of nodes is the same as names |
|
144
|
|
|
TESTED_PROCESS.add_edge(stages[0], stages[1]) |
|
|
|
|
|
|
145
|
|
|
TESTED_PROCESS.add_edge(stages[1], stages[2]) |
|
|
|
|
|
|
146
|
|
|
TESTED_PROCESS.add_edge(stages[2], stages[3]) |
|
|
|
|
|
|
147
|
|
|
|
|
148
|
|
|
TESTED_PROCESS.add_edge(stages[1], stages[4]) |
|
|
|
|
|
|
149
|
|
|
TESTED_PROCESS.add_edge(stages[4], stages[5]) |
|
|
|
|
|
|
150
|
|
|
TESTED_PROCESS.add_edge(stages[4], stages[6]) |
|
|
|
|
|
|
151
|
|
|
|
|
152
|
|
|
# Groups: |
|
153
|
|
|
# (0)0 |
|
154
|
|
|
# | |
|
155
|
|
|
# (0)1 |
|
156
|
|
|
# |\ |
|
157
|
|
|
# (0)2 4(1) |
|
158
|
|
|
# | | \ |
|
159
|
|
|
# (1)3 5(1)6(2) |
|
160
|
|
|
|
|
161
|
|
|
GROUPING_STRATEGY = GroupingStrategy(list(stages.values())) |
|
162
|
|
|
GROUPING_STRATEGY.define_group((stages[0], stages[1], stages[2])) |
|
163
|
|
|
GROUPING_STRATEGY.define_group((stages[3], stages[4], stages[5])) |
|
164
|
|
|
GROUPING_STRATEGY.define_group((stages[6],)) |
|
165
|
|
|
|
|
166
|
|
|
OPTIMIZATION_STARTEGY = CallsOptimizationStrategy() |
|
167
|
|
|
|
|
168
|
|
|
PSO_ALGORITHM = PsoAlgorithm(TESTED_PROCESS, GROUPING_STRATEGY, |
|
169
|
|
|
OPTIMIZATION_STARTEGY, 2) |
|
170
|
|
|
|