|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
import json |
|
3
|
|
|
|
|
4
|
|
|
from elasticsearch_dsl.aggs import A |
|
5
|
|
|
from elasticsearch_dsl.function import SF |
|
6
|
|
|
from elasticsearch_dsl.query import Q |
|
7
|
|
|
from tg.decorators import expose |
|
8
|
|
|
|
|
9
|
|
|
from pyjobsweb import model |
|
10
|
|
|
from pyjobsweb.lib.base import BaseController |
|
11
|
|
|
|
|
12
|
|
|
|
|
13
|
|
|
class GeocompleteController(BaseController): |
|
14
|
|
|
@staticmethod |
|
15
|
|
|
def geocomplete_town_input_parser(address_input): |
|
16
|
|
|
query_tokens = address_input.split(' ') |
|
17
|
|
|
|
|
18
|
|
|
postal_code = None |
|
19
|
|
|
address = None |
|
20
|
|
|
|
|
21
|
|
|
for token in query_tokens: |
|
22
|
|
|
try: |
|
23
|
|
|
int(token) |
|
24
|
|
|
|
|
25
|
|
|
if len(token) <= 5: |
|
26
|
|
|
postal_code = postal_code if postal_code else token |
|
27
|
|
|
else: |
|
28
|
|
|
return dict(results=[]) |
|
29
|
|
|
except ValueError: |
|
30
|
|
|
address = u'%s %s' % (address, token) if address else token |
|
31
|
|
|
|
|
32
|
|
|
return address, postal_code |
|
33
|
|
|
|
|
34
|
|
|
@expose('json') |
|
35
|
|
|
def index(self, address=None, *args, **kwargs): |
|
36
|
|
|
if not address: |
|
37
|
|
|
return dict(results=[]) |
|
38
|
|
|
|
|
39
|
|
|
search = model.Geocomplete().search() |
|
40
|
|
|
|
|
41
|
|
|
address_query = Q() |
|
42
|
|
|
postal_code_query = Q() |
|
43
|
|
|
|
|
44
|
|
|
(address, postal_code) = self.geocomplete_town_input_parser(address) |
|
45
|
|
|
|
|
46
|
|
|
if address: |
|
47
|
|
|
address_query = Q('match', name=address) |
|
48
|
|
|
|
|
49
|
|
|
if postal_code: |
|
50
|
|
|
postal_code_query = Q('match', postal_code=postal_code) |
|
51
|
|
|
|
|
52
|
|
|
weight_scoring_function = SF( |
|
53
|
|
|
'field_value_factor', |
|
54
|
|
|
factor=1, |
|
55
|
|
|
modifier='none', |
|
56
|
|
|
field='weight' |
|
57
|
|
|
) |
|
58
|
|
|
|
|
59
|
|
|
search.query = Q( |
|
60
|
|
|
'function_score', |
|
61
|
|
|
query=address_query & postal_code_query, |
|
62
|
|
|
functions=[weight_scoring_function] |
|
63
|
|
|
) |
|
64
|
|
|
|
|
65
|
|
|
dedup_docs = A( |
|
66
|
|
|
'top_hits', |
|
67
|
|
|
size=1, |
|
68
|
|
|
sort={'postal_code.raw': 'asc'} |
|
69
|
|
|
) |
|
70
|
|
|
|
|
71
|
|
|
dedup = A( |
|
72
|
|
|
'terms', |
|
73
|
|
|
field='name.raw', |
|
74
|
|
|
size=5, |
|
75
|
|
|
order={'score_sort': 'desc'} |
|
76
|
|
|
) |
|
77
|
|
|
|
|
78
|
|
|
score_sort = A( |
|
79
|
|
|
'max', |
|
80
|
|
|
script=dict(lang='expression', script='_score') |
|
81
|
|
|
) |
|
82
|
|
|
|
|
83
|
|
|
dedup.bucket('dedup_docs', dedup_docs) |
|
84
|
|
|
dedup.bucket('score_sort', score_sort) |
|
85
|
|
|
search.aggs.bucket('dedup', dedup) |
|
86
|
|
|
|
|
87
|
|
|
# Do not compute the results, we are only interested by the aggregations |
|
88
|
|
|
raw_res = search[0:0].execute() |
|
89
|
|
|
|
|
90
|
|
|
res = list() |
|
91
|
|
|
for bucket in raw_res.aggregations.dedup.buckets: |
|
92
|
|
|
for source_doc in bucket['dedup_docs']['hits']['hits']: |
|
93
|
|
|
fields = source_doc['_source'] |
|
94
|
|
|
|
|
95
|
|
|
name = fields['name'] |
|
96
|
|
|
complement = fields['complement'] |
|
97
|
|
|
postal_code = fields['postal_code'] |
|
98
|
|
|
country = 'France' |
|
99
|
|
|
|
|
100
|
|
|
geoloc = fields['geolocation'] |
|
101
|
|
|
coordinates = dict(lat=geoloc['lat'], lon=geoloc['lon']) |
|
102
|
|
|
|
|
103
|
|
|
res.append(dict( |
|
104
|
|
|
name=name, |
|
105
|
|
|
complement=complement, |
|
106
|
|
|
postal_code=postal_code, |
|
107
|
|
|
country=country, |
|
108
|
|
|
coordinates=coordinates |
|
109
|
|
|
)) |
|
110
|
|
|
|
|
111
|
|
|
return dict(results=res) |
|
112
|
|
|
|