|
1
|
|
|
package it.cnr.istc.pst.platinum.ai.deliberative.strategy; |
|
2
|
|
|
|
|
3
|
|
|
import java.util.Map; |
|
4
|
|
|
|
|
5
|
|
|
import it.cnr.istc.pst.platinum.ai.deliberative.solver.SearchSpaceNode; |
|
6
|
|
|
import it.cnr.istc.pst.platinum.ai.framework.domain.component.DomainComponent; |
|
7
|
|
|
|
|
8
|
|
|
/** |
|
9
|
|
|
* |
|
10
|
|
|
* @author alessandro |
|
11
|
|
|
* |
|
12
|
|
|
*/ |
|
13
|
|
|
public class StandardDeviationMinimizationSearchStrategy extends SearchStrategy { |
|
14
|
|
|
|
|
15
|
|
|
/** |
|
16
|
|
|
* |
|
17
|
|
|
*/ |
|
18
|
|
|
protected StandardDeviationMinimizationSearchStrategy() { |
|
19
|
|
|
super("TimelineSDMinimizationSearchStrategy"); |
|
20
|
|
|
} |
|
21
|
|
|
|
|
22
|
|
|
/** |
|
23
|
|
|
* |
|
24
|
|
|
*/ |
|
25
|
|
|
@Override |
|
26
|
|
|
public void enqueue(SearchSpaceNode node) { |
|
27
|
|
|
|
|
28
|
|
|
// compute a pessimistic estimation of flaw resolution cost |
|
29
|
|
|
Map<DomainComponent, Double[]> h = this.computeHeuristicCost(node); |
|
30
|
|
|
// set heuristic estimation |
|
31
|
|
|
node.setHeuristicCost(h); |
|
32
|
|
|
// add the node to the priority queue |
|
33
|
|
|
this.fringe.offer(node); |
|
34
|
|
|
} |
|
35
|
|
|
|
|
36
|
|
|
/** |
|
37
|
|
|
* |
|
38
|
|
|
*/ |
|
39
|
|
|
@Override |
|
40
|
|
|
public int compare(SearchSpaceNode o1, SearchSpaceNode o2) { |
|
41
|
|
|
|
|
42
|
|
|
// get plan horizon |
|
43
|
|
|
long horizon = this.pdb.getHorizon(); |
|
44
|
|
|
|
|
45
|
|
|
double sd1 = this.standardDevitation(horizon, o1); |
|
46
|
|
|
double sd2 = this.standardDevitation(horizon, o2); |
|
47
|
|
|
|
|
48
|
|
|
// greedy search checking standard deviation to the horizon |
|
49
|
|
|
return o1.getDepth() > o2.getDepth() ? -1 : o1.getDepth() < o2.getDepth() ? 1 : |
|
50
|
|
|
// check standard deviations |
|
51
|
|
|
sd1 < sd2 ? -1 : sd1 > sd2 ? 1 : |
|
52
|
|
|
0; |
|
53
|
|
|
} |
|
54
|
|
|
|
|
55
|
|
|
/** |
|
56
|
|
|
* |
|
57
|
|
|
* @param horizon |
|
58
|
|
|
* @param node |
|
59
|
|
|
* @return |
|
60
|
|
|
*/ |
|
61
|
|
|
public double standardDevitation(long horizon, SearchSpaceNode node) { |
|
62
|
|
|
|
|
63
|
|
|
// initialize standard deviation with horizon |
|
64
|
|
|
double sd = horizon; |
|
65
|
|
|
|
|
66
|
|
|
// get estimated makespan of the plan |
|
67
|
|
|
Map<DomainComponent, Double[]> mk = node.getEstimatedMakespan(); |
|
68
|
|
|
double N = mk.keySet().size(); |
|
69
|
|
|
double quadSum = 0; |
|
70
|
|
|
for (DomainComponent comp : mk.keySet()) { |
|
|
|
|
|
|
71
|
|
|
|
|
72
|
|
|
quadSum += Math.pow((mk.get(comp)[0] - horizon), 2.0); |
|
73
|
|
|
} |
|
74
|
|
|
|
|
75
|
|
|
// check data |
|
76
|
|
|
if (N > 0 && quadSum > 0) { |
|
77
|
|
|
// compute standard deviation |
|
78
|
|
|
sd = Math.sqrt(quadSum / N); |
|
79
|
|
|
} |
|
80
|
|
|
|
|
81
|
|
|
// return standard deviation |
|
82
|
|
|
return sd; |
|
83
|
|
|
|
|
84
|
|
|
} |
|
85
|
|
|
|
|
86
|
|
|
} |
|
87
|
|
|
|