|
1
|
|
|
# Copyright (c) 2014, Salesforce.com, Inc. All rights reserved. |
|
2
|
|
|
# |
|
3
|
|
|
# Redistribution and use in source and binary forms, with or without |
|
4
|
|
|
# modification, are permitted provided that the following conditions |
|
5
|
|
|
# are met: |
|
6
|
|
|
# |
|
7
|
|
|
# - Redistributions of source code must retain the above copyright |
|
8
|
|
|
# notice, this list of conditions and the following disclaimer. |
|
9
|
|
|
# - Redistributions in binary form must reproduce the above copyright |
|
10
|
|
|
# notice, this list of conditions and the following disclaimer in the |
|
11
|
|
|
# documentation and/or other materials provided with the distribution. |
|
12
|
|
|
# - Neither the name of Salesforce.com nor the names of its contributors |
|
13
|
|
|
# may be used to endorse or promote products derived from this |
|
14
|
|
|
# software without specific prior written permission. |
|
15
|
|
|
# |
|
16
|
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
17
|
|
|
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
18
|
|
|
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
19
|
|
|
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
20
|
|
|
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
21
|
|
|
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
22
|
|
|
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
23
|
|
|
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
|
24
|
|
|
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR |
|
25
|
|
|
# TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE |
|
26
|
|
|
# USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
27
|
|
|
|
|
28
|
|
|
import math |
|
29
|
|
|
import functools |
|
30
|
|
|
from collections import defaultdict |
|
31
|
|
|
import numpy |
|
32
|
|
|
import numpy.random |
|
33
|
|
|
from nose import SkipTest |
|
34
|
|
|
from nose.tools import ( |
|
35
|
|
|
assert_true, |
|
36
|
|
|
assert_equal, |
|
37
|
|
|
assert_less, |
|
38
|
|
|
assert_greater, |
|
39
|
|
|
assert_is_instance, |
|
40
|
|
|
) |
|
41
|
|
|
from distributions.dbg.random import sample_discrete |
|
42
|
|
|
from goftests import discrete_goodness_of_fit |
|
43
|
|
|
from distributions.tests.util import ( |
|
44
|
|
|
require_cython, |
|
45
|
|
|
seed_all, |
|
46
|
|
|
assert_hasattr, |
|
47
|
|
|
assert_close, |
|
48
|
|
|
) |
|
49
|
|
|
from distributions.dbg.random import scores_to_probs |
|
50
|
|
|
import distributions.dbg.clustering |
|
51
|
|
|
require_cython() |
|
52
|
|
|
import distributions.lp.clustering |
|
53
|
|
|
from distributions.lp.clustering import count_assignments |
|
54
|
|
|
from distributions.lp.mixture import MixtureIdTracker |
|
55
|
|
|
|
|
56
|
|
|
MODELS = { |
|
57
|
|
|
'dbg.LowEntropy': distributions.dbg.clustering.LowEntropy, |
|
58
|
|
|
'lp.PitmanYor': distributions.lp.clustering.PitmanYor, |
|
59
|
|
|
'lp.LowEntropy': distributions.lp.clustering.LowEntropy, |
|
60
|
|
|
} |
|
61
|
|
|
|
|
62
|
|
|
SKIP_EXPENSIVE_TESTS = False |
|
63
|
|
|
SAMPLE_COUNT = 2000 |
|
64
|
|
|
MIN_GOODNESS_OF_FIT = 1e-3 |
|
65
|
|
|
|
|
66
|
|
|
|
|
67
|
|
|
def iter_examples(Model): |
|
68
|
|
|
assert_hasattr(Model, 'EXAMPLES') |
|
69
|
|
|
EXAMPLES = Model.EXAMPLES |
|
70
|
|
|
assert_is_instance(EXAMPLES, list) |
|
71
|
|
|
assert_true(EXAMPLES, 'no examples provided') |
|
72
|
|
|
for i, EXAMPLE in enumerate(EXAMPLES): |
|
73
|
|
|
print 'example {}/{}'.format(1 + i, len(Model.EXAMPLES)) |
|
74
|
|
|
yield EXAMPLE |
|
75
|
|
|
|
|
76
|
|
|
|
|
77
|
|
|
def for_each_model(*filters): |
|
78
|
|
|
''' |
|
79
|
|
|
Run one test per Model, filtering out inappropriate Models for test. |
|
80
|
|
|
''' |
|
81
|
|
|
def filtered(test_fun): |
|
82
|
|
|
|
|
83
|
|
|
@functools.wraps(test_fun) |
|
84
|
|
|
def test_one_model(name): |
|
85
|
|
|
Model = MODELS[name] |
|
86
|
|
|
for EXAMPLE in iter_examples(Model): |
|
87
|
|
|
seed_all(0) |
|
88
|
|
|
if SKIP_EXPENSIVE_TESTS and name.startswith('dbg'): |
|
89
|
|
|
sample_count = SAMPLE_COUNT / 10 |
|
90
|
|
|
else: |
|
91
|
|
|
sample_count = SAMPLE_COUNT |
|
92
|
|
|
test_fun(Model, EXAMPLE, sample_count) |
|
93
|
|
|
|
|
94
|
|
|
@functools.wraps(test_fun) |
|
95
|
|
|
def test_all_models(): |
|
96
|
|
|
for name, Model in sorted(MODELS.iteritems()): |
|
97
|
|
|
if all(f(Model) for f in filters): |
|
98
|
|
|
yield test_one_model, name |
|
99
|
|
|
|
|
100
|
|
|
return test_all_models |
|
101
|
|
|
return filtered |
|
102
|
|
|
|
|
103
|
|
|
|
|
104
|
|
|
def canonicalize(assignments): |
|
105
|
|
|
groups = defaultdict(lambda: []) |
|
106
|
|
|
for value, group in enumerate(assignments): |
|
107
|
|
|
groups[group].append(value) |
|
108
|
|
|
result = [] |
|
109
|
|
|
for group in groups.itervalues(): |
|
110
|
|
|
group.sort() |
|
111
|
|
|
result.append(tuple(group)) |
|
112
|
|
|
result.sort() |
|
113
|
|
|
return tuple(result) |
|
114
|
|
|
|
|
115
|
|
|
|
|
116
|
|
|
@for_each_model() |
|
117
|
|
|
def test_load_and_dump(Model, EXAMPLE, *unused): |
|
118
|
|
|
model = Model() |
|
119
|
|
|
model.load(EXAMPLE) |
|
120
|
|
|
expected = EXAMPLE |
|
121
|
|
|
actual = model.dump() |
|
122
|
|
|
assert_close(expected, actual) |
|
123
|
|
|
|
|
124
|
|
|
|
|
125
|
|
|
def iter_valid_sizes(example, max_size, min_size=2): |
|
126
|
|
|
max_size = 5 |
|
127
|
|
|
dataset_size = example.get('dataset_size', float('inf')) |
|
128
|
|
|
sizes = [ |
|
129
|
|
|
size |
|
130
|
|
|
for size in xrange(min_size, max_size + 1) |
|
131
|
|
|
if size <= dataset_size |
|
132
|
|
|
] |
|
133
|
|
|
assert sizes, 'no valid sizes to test' |
|
134
|
|
|
for size in sizes: |
|
135
|
|
|
print 'sample_size = {}'.format(size) |
|
136
|
|
|
yield size |
|
137
|
|
|
|
|
138
|
|
|
|
|
139
|
|
|
@for_each_model() |
|
140
|
|
|
def test_sample_matches_score_counts(Model, EXAMPLE, sample_count): |
|
141
|
|
|
for size in iter_valid_sizes(EXAMPLE, max_size=10): |
|
142
|
|
|
model = Model() |
|
143
|
|
|
model.load(EXAMPLE) |
|
144
|
|
|
|
|
145
|
|
|
samples = [] |
|
146
|
|
|
probs_dict = {} |
|
147
|
|
|
for _ in xrange(sample_count): |
|
148
|
|
|
value = model.sample_assignments(size) |
|
149
|
|
|
sample = canonicalize(value) |
|
150
|
|
|
samples.append(sample) |
|
151
|
|
|
if sample not in probs_dict: |
|
152
|
|
|
assignments = dict(enumerate(value)) |
|
153
|
|
|
counts = count_assignments(assignments) |
|
154
|
|
|
prob = math.exp(model.score_counts(counts)) |
|
155
|
|
|
probs_dict[sample] = prob |
|
156
|
|
|
|
|
157
|
|
|
# renormalize here; test normalization separately |
|
158
|
|
|
total = sum(probs_dict.values()) |
|
159
|
|
|
for key in probs_dict: |
|
160
|
|
|
probs_dict[key] /= total |
|
161
|
|
|
|
|
162
|
|
|
gof = discrete_goodness_of_fit(samples, probs_dict, plot=True) |
|
163
|
|
|
print '{} gof = {:0.3g}'.format(Model.__name__, gof) |
|
164
|
|
|
assert_greater(gof, MIN_GOODNESS_OF_FIT) |
|
165
|
|
|
|
|
166
|
|
|
|
|
167
|
|
|
@for_each_model() |
|
168
|
|
|
def test_score_counts_is_normalized(Model, EXAMPLE, sample_count): |
|
169
|
|
|
|
|
170
|
|
|
for sample_size in iter_valid_sizes(EXAMPLE, max_size=10): |
|
171
|
|
|
model = Model() |
|
172
|
|
|
model.load(EXAMPLE) |
|
173
|
|
|
|
|
174
|
|
|
if Model.__name__ == 'LowEntropy' and sample_size < model.dataset_size: |
|
175
|
|
|
print 'WARNING LowEntropy.score_counts normalization is imprecise' |
|
176
|
|
|
print ' when sample_size < dataset_size' |
|
177
|
|
|
tol = 0.5 |
|
178
|
|
|
else: |
|
179
|
|
|
tol = 0.01 |
|
180
|
|
|
|
|
181
|
|
|
probs_dict = {} |
|
182
|
|
|
for _ in xrange(sample_count): |
|
183
|
|
|
value = model.sample_assignments(sample_size) |
|
184
|
|
|
sample = canonicalize(value) |
|
185
|
|
|
if sample not in probs_dict: |
|
186
|
|
|
assignments = dict(enumerate(value)) |
|
187
|
|
|
counts = count_assignments(assignments) |
|
188
|
|
|
prob = math.exp(model.score_counts(counts)) |
|
189
|
|
|
probs_dict[sample] = prob |
|
190
|
|
|
|
|
191
|
|
|
total = sum(probs_dict.values()) |
|
192
|
|
|
assert_less(abs(total - 1), tol, 'not normalized: {}'.format(total)) |
|
193
|
|
|
|
|
194
|
|
|
|
|
195
|
|
|
def add_to_counts(counts, pos): |
|
196
|
|
|
counts = counts[:] |
|
197
|
|
|
counts[pos] += 1 |
|
198
|
|
|
return counts |
|
199
|
|
|
|
|
200
|
|
|
|
|
201
|
|
|
@for_each_model() |
|
202
|
|
|
def test_score_add_value_matches_score_counts(Model, EXAMPLE, sample_count): |
|
203
|
|
|
for sample_size in iter_valid_sizes(EXAMPLE, min_size=2, max_size=10): |
|
204
|
|
|
model = Model() |
|
205
|
|
|
model.load(EXAMPLE) |
|
206
|
|
|
|
|
207
|
|
|
samples = set( |
|
208
|
|
|
canonicalize(model.sample_assignments(sample_size - 1)) |
|
209
|
|
|
for _ in xrange(sample_count) |
|
210
|
|
|
) |
|
211
|
|
|
|
|
212
|
|
|
for sample in samples: |
|
213
|
|
|
nonempty_group_count = len(sample) |
|
214
|
|
|
counts = map(len, sample) |
|
215
|
|
|
actual = numpy.zeros(len(counts) + 1) |
|
216
|
|
|
expected = numpy.zeros(len(counts) + 1) |
|
217
|
|
|
|
|
218
|
|
|
# add to existing group |
|
219
|
|
|
for i, group in enumerate(sample): |
|
220
|
|
|
group_size = len(sample[i]) |
|
221
|
|
|
expected[i] = model.score_counts(add_to_counts(counts, i)) |
|
222
|
|
|
actual[i] = model.score_add_value( |
|
223
|
|
|
group_size, |
|
224
|
|
|
nonempty_group_count, |
|
225
|
|
|
sample_size - 1) |
|
226
|
|
|
|
|
227
|
|
|
# add to new group |
|
228
|
|
|
i = len(counts) |
|
229
|
|
|
group_size = 0 |
|
230
|
|
|
expected[i] = model.score_counts(counts + [1]) |
|
231
|
|
|
actual[i] = model.score_add_value( |
|
232
|
|
|
group_size, |
|
233
|
|
|
nonempty_group_count, |
|
234
|
|
|
sample_size - 1) |
|
235
|
|
|
|
|
236
|
|
|
actual = scores_to_probs(actual) |
|
237
|
|
|
expected = scores_to_probs(expected) |
|
238
|
|
|
print actual, expected |
|
239
|
|
|
assert_close(actual, expected, tol=0.05) |
|
240
|
|
|
|
|
241
|
|
|
|
|
242
|
|
|
@for_each_model(lambda Model: hasattr(Model, 'Mixture')) |
|
243
|
|
|
def test_mixture_score_matches_score_add_value(Model, EXAMPLE, *unused): |
|
244
|
|
|
sample_count = 200 |
|
245
|
|
|
model = Model() |
|
246
|
|
|
model.load(EXAMPLE) |
|
247
|
|
|
|
|
248
|
|
|
if Model.__name__ == 'LowEntropy' and sample_count > model.dataset_size: |
|
249
|
|
|
raise SkipTest('skipping trivial example') |
|
250
|
|
|
|
|
251
|
|
|
assignment_vector = model.sample_assignments(sample_count) |
|
252
|
|
|
assignments = dict(enumerate(assignment_vector)) |
|
253
|
|
|
nonempty_counts = count_assignments(assignments) |
|
254
|
|
|
nonempty_group_count = len(nonempty_counts) |
|
255
|
|
|
assert_greater(nonempty_group_count, 1, "test is inaccurate") |
|
256
|
|
|
|
|
257
|
|
|
def check_counts(mixture, counts, empty_group_count): |
|
258
|
|
|
# print 'counts =', counts |
|
259
|
|
|
empty_groupids = frozenset(mixture.empty_groupids) |
|
260
|
|
|
assert_equal(len(empty_groupids), empty_group_count) |
|
261
|
|
|
for groupid in empty_groupids: |
|
262
|
|
|
assert_equal(counts[groupid], 0) |
|
263
|
|
|
|
|
264
|
|
|
def check_scores(mixture, counts, empty_group_count): |
|
265
|
|
|
sample_count = sum(counts) |
|
266
|
|
|
nonempty_group_count = len(counts) - empty_group_count |
|
267
|
|
|
expected = [ |
|
268
|
|
|
model.score_add_value( |
|
269
|
|
|
group_size, |
|
270
|
|
|
nonempty_group_count, |
|
271
|
|
|
sample_count, |
|
272
|
|
|
empty_group_count) |
|
273
|
|
|
for group_size in counts |
|
274
|
|
|
] |
|
275
|
|
|
noise = numpy.random.randn(len(counts)) |
|
276
|
|
|
actual = numpy.zeros(len(counts), dtype=numpy.float32) |
|
277
|
|
|
actual[:] = noise |
|
278
|
|
|
mixture.score_value(model, actual) |
|
279
|
|
|
assert_close(actual, expected) |
|
280
|
|
|
return actual |
|
281
|
|
|
|
|
282
|
|
|
for empty_group_count in [1, 10]: |
|
283
|
|
|
print 'empty_group_count =', empty_group_count |
|
284
|
|
|
counts = nonempty_counts + [0] * empty_group_count |
|
285
|
|
|
numpy.random.shuffle(counts) |
|
286
|
|
|
mixture = Model.Mixture() |
|
287
|
|
|
id_tracker = MixtureIdTracker() |
|
288
|
|
|
|
|
289
|
|
|
print 'init' |
|
290
|
|
|
mixture.init(model, counts) |
|
291
|
|
|
id_tracker.init(len(counts)) |
|
292
|
|
|
check_counts(mixture, counts, empty_group_count) |
|
293
|
|
|
check_scores(mixture, counts, empty_group_count) |
|
294
|
|
|
|
|
295
|
|
|
print 'adding' |
|
296
|
|
|
groupids = [] |
|
297
|
|
|
for _ in xrange(sample_count): |
|
298
|
|
|
check_counts(mixture, counts, empty_group_count) |
|
299
|
|
|
scores = check_scores(mixture, counts, empty_group_count) |
|
300
|
|
|
probs = scores_to_probs(scores) |
|
301
|
|
|
groupid = sample_discrete(probs) |
|
302
|
|
|
expected_group_added = (counts[groupid] == 0) |
|
303
|
|
|
counts[groupid] += 1 |
|
304
|
|
|
actual_group_added = mixture.add_value(model, groupid) |
|
305
|
|
|
assert_equal(actual_group_added, expected_group_added) |
|
306
|
|
|
groupids.append(groupid) |
|
307
|
|
|
if actual_group_added: |
|
308
|
|
|
id_tracker.add_group() |
|
309
|
|
|
counts.append(0) |
|
310
|
|
|
|
|
311
|
|
|
check_counts(mixture, counts, empty_group_count) |
|
312
|
|
|
check_scores(mixture, counts, empty_group_count) |
|
313
|
|
|
|
|
314
|
|
|
print 'removing' |
|
315
|
|
|
for global_groupid in groupids: |
|
316
|
|
|
groupid = id_tracker.global_to_packed(global_groupid) |
|
317
|
|
|
counts[groupid] -= 1 |
|
318
|
|
|
expected_group_removed = (counts[groupid] == 0) |
|
319
|
|
|
actual_group_removed = mixture.remove_value(model, groupid) |
|
320
|
|
|
assert_equal(actual_group_removed, expected_group_removed) |
|
321
|
|
|
if expected_group_removed: |
|
322
|
|
|
id_tracker.remove_group(groupid) |
|
323
|
|
|
back = counts.pop() |
|
324
|
|
|
if groupid < len(counts): |
|
325
|
|
|
counts[groupid] = back |
|
326
|
|
|
check_counts(mixture, counts, empty_group_count) |
|
327
|
|
|
check_scores(mixture, counts, empty_group_count) |
|
328
|
|
|
|