1
|
|
|
<?php |
2
|
|
|
|
3
|
|
|
namespace Phperf\Pipeline\Vector; |
4
|
|
|
|
5
|
|
|
class KalmanFilter implements VectorProcessor |
6
|
|
|
{ |
7
|
|
|
/** @var float|int Process noise (how variable data is expected to come) */ |
8
|
|
|
public $processNoise; |
9
|
|
|
/** @var float|int Measurement noise (how strong is ) */ |
10
|
|
|
public $measurementNoise; |
11
|
|
|
|
12
|
|
|
public $stateVector; |
13
|
|
|
public $controlVector; |
14
|
|
|
public $measurementVector; |
15
|
|
|
public $cov; |
16
|
|
|
public $x; |
17
|
|
|
|
18
|
|
|
|
19
|
|
|
/** |
20
|
|
|
* Create 1-dimensional kalman filter |
21
|
|
|
* @param float|int $processNoise Process noise |
22
|
|
|
* @param float|int $measurementNoise Measurement noise |
23
|
|
|
* @param float|int $stateVector State vector |
24
|
|
|
* @param float|int $controlVector Control vector |
25
|
|
|
* @param float|int $measurementVector Measurement vector |
26
|
|
|
* @param $cov |
27
|
|
|
* @param $x |
28
|
|
|
*/ |
29
|
|
|
function __construct($processNoise = 1, $measurementNoise = 1, $stateVector = 1, $controlVector = 0, $measurementVector = 1, $cov = null, $x = null) |
30
|
|
|
{ |
31
|
|
|
$this->processNoise = $processNoise; // noise power desirable |
32
|
|
|
$this->measurementNoise = $measurementNoise; // noise power estimated |
33
|
|
|
|
34
|
|
|
$this->stateVector = $stateVector; |
35
|
|
|
$this->controlVector = $controlVector; |
36
|
|
|
$this->measurementVector = $measurementVector; |
37
|
|
|
|
38
|
|
|
$this->cov = $cov; |
39
|
|
|
$this->x = $x; // estimated signal without noise |
40
|
|
|
} |
41
|
|
|
|
42
|
|
|
/** |
43
|
|
|
* Filter a new value |
44
|
|
|
* @param float $value Measurement |
45
|
|
|
* @param float|int $u Control |
46
|
|
|
* @return float |
47
|
|
|
*/ |
48
|
|
|
function value($value, $u = 0) |
|
|
|
|
49
|
|
|
{ |
50
|
|
|
if (null === $this->x) { |
51
|
|
|
$this->x = (1 / $this->measurementVector) * $value; |
52
|
|
|
$this->cov = (1 / $this->measurementVector) * $this->measurementNoise * (1 / $this->measurementVector); |
53
|
|
|
} else { |
54
|
|
|
// Compute prediction |
55
|
|
|
$predX = ($this->stateVector * $this->x) + ($this->controlVector * $u); |
56
|
|
|
$predCov = (($this->stateVector * $this->cov) * $this->stateVector) + $this->processNoise; |
57
|
|
|
|
58
|
|
|
// Kalman gain |
59
|
|
|
$K = $predCov * $this->measurementVector * |
60
|
|
|
(1 / (($this->measurementVector * $predCov * $this->measurementVector) + $this->measurementNoise)); |
61
|
|
|
|
62
|
|
|
// Correction |
63
|
|
|
$this->x = $predX + $K * ($value - ($this->measurementVector * $predX)); |
64
|
|
|
$this->cov = $predCov - ($K * $this->measurementVector * $predCov); |
65
|
|
|
} |
66
|
|
|
|
67
|
|
|
return $this->x; |
68
|
|
|
} |
69
|
|
|
} |
70
|
|
|
|
Adding explicit visibility (
private
,protected
, orpublic
) is generally recommend to communicate to other developers how, and from where this method is intended to be used.