|
1
|
|
|
<?php |
|
2
|
|
|
|
|
3
|
|
|
namespace Phperf\Pipeline\Vector; |
|
4
|
|
|
|
|
5
|
|
|
class KalmanFilter implements VectorProcessor |
|
6
|
|
|
{ |
|
7
|
|
|
/** @var float|int Process noise (how variable data is expected to come) */ |
|
8
|
|
|
public $processNoise; |
|
9
|
|
|
/** @var float|int Measurement noise (how strong is ) */ |
|
10
|
|
|
public $measurementNoise; |
|
11
|
|
|
|
|
12
|
|
|
public $stateVector; |
|
13
|
|
|
public $controlVector; |
|
14
|
|
|
public $measurementVector; |
|
15
|
|
|
public $cov; |
|
16
|
|
|
public $x; |
|
17
|
|
|
|
|
18
|
|
|
|
|
19
|
|
|
/** |
|
20
|
|
|
* Create 1-dimensional kalman filter |
|
21
|
|
|
* @param float|int $processNoise Process noise |
|
22
|
|
|
* @param float|int $measurementNoise Measurement noise |
|
23
|
|
|
* @param float|int $stateVector State vector |
|
24
|
|
|
* @param float|int $controlVector Control vector |
|
25
|
|
|
* @param float|int $measurementVector Measurement vector |
|
26
|
|
|
* @param $cov |
|
27
|
|
|
* @param $x |
|
28
|
|
|
*/ |
|
29
|
|
|
function __construct($processNoise = 1, $measurementNoise = 1, $stateVector = 1, $controlVector = 0, $measurementVector = 1, $cov = null, $x = null) |
|
30
|
|
|
{ |
|
31
|
|
|
$this->processNoise = $processNoise; // noise power desirable |
|
32
|
|
|
$this->measurementNoise = $measurementNoise; // noise power estimated |
|
33
|
|
|
|
|
34
|
|
|
$this->stateVector = $stateVector; |
|
35
|
|
|
$this->controlVector = $controlVector; |
|
36
|
|
|
$this->measurementVector = $measurementVector; |
|
37
|
|
|
|
|
38
|
|
|
$this->cov = $cov; |
|
39
|
|
|
$this->x = $x; // estimated signal without noise |
|
40
|
|
|
} |
|
41
|
|
|
|
|
42
|
|
|
/** |
|
43
|
|
|
* Filter a new value |
|
44
|
|
|
* @param float $value Measurement |
|
45
|
|
|
* @param float|int $u Control |
|
46
|
|
|
* @return float |
|
47
|
|
|
*/ |
|
48
|
|
|
function value($value, $u = 0) |
|
|
|
|
|
|
49
|
|
|
{ |
|
50
|
|
|
if (null === $this->x) { |
|
51
|
|
|
$this->x = (1 / $this->measurementVector) * $value; |
|
52
|
|
|
$this->cov = (1 / $this->measurementVector) * $this->measurementNoise * (1 / $this->measurementVector); |
|
53
|
|
|
} else { |
|
54
|
|
|
// Compute prediction |
|
55
|
|
|
$predX = ($this->stateVector * $this->x) + ($this->controlVector * $u); |
|
56
|
|
|
$predCov = (($this->stateVector * $this->cov) * $this->stateVector) + $this->processNoise; |
|
57
|
|
|
|
|
58
|
|
|
// Kalman gain |
|
59
|
|
|
$K = $predCov * $this->measurementVector * |
|
60
|
|
|
(1 / (($this->measurementVector * $predCov * $this->measurementVector) + $this->measurementNoise)); |
|
61
|
|
|
|
|
62
|
|
|
// Correction |
|
63
|
|
|
$this->x = $predX + $K * ($value - ($this->measurementVector * $predX)); |
|
64
|
|
|
$this->cov = $predCov - ($K * $this->measurementVector * $predCov); |
|
65
|
|
|
} |
|
66
|
|
|
|
|
67
|
|
|
return $this->x; |
|
68
|
|
|
} |
|
69
|
|
|
} |
|
70
|
|
|
|
Adding explicit visibility (
private,protected, orpublic) is generally recommend to communicate to other developers how, and from where this method is intended to be used.