php-ai /
php-ml
| 1 | <?php |
||
| 2 | |||
| 3 | declare(strict_types=1); |
||
| 4 | |||
| 5 | namespace Phpml\Helper; |
||
| 6 | |||
| 7 | use Phpml\Classification\Classifier; |
||
| 8 | |||
| 9 | trait OneVsRest |
||
| 10 | { |
||
| 11 | /** |
||
| 12 | * @var array |
||
| 13 | */ |
||
| 14 | protected $classifiers = []; |
||
| 15 | |||
| 16 | /** |
||
| 17 | * All provided training targets' labels. |
||
| 18 | * |
||
| 19 | * @var array |
||
| 20 | */ |
||
| 21 | protected $allLabels = []; |
||
| 22 | |||
| 23 | /** |
||
| 24 | * @var array |
||
| 25 | */ |
||
| 26 | protected $costValues = []; |
||
| 27 | |||
| 28 | /** |
||
| 29 | * Train a binary classifier in the OvR style |
||
| 30 | */ |
||
| 31 | public function train(array $samples, array $targets): void |
||
| 32 | { |
||
| 33 | // Clears previous stuff. |
||
| 34 | $this->reset(); |
||
| 35 | |||
| 36 | $this->trainByLabel($samples, $targets); |
||
| 37 | } |
||
| 38 | |||
| 39 | /** |
||
| 40 | * Resets the classifier and the vars internally used by OneVsRest to create multiple classifiers. |
||
| 41 | */ |
||
| 42 | public function reset(): void |
||
| 43 | { |
||
| 44 | $this->classifiers = []; |
||
| 45 | $this->allLabels = []; |
||
| 46 | $this->costValues = []; |
||
| 47 | |||
| 48 | $this->resetBinary(); |
||
| 49 | } |
||
| 50 | |||
| 51 | protected function trainByLabel(array $samples, array $targets, array $allLabels = []): void |
||
| 52 | { |
||
| 53 | // Overwrites the current value if it exist. $allLabels must be provided for each partialTrain run. |
||
| 54 | $this->allLabels = count($allLabels) === 0 ? array_keys(array_count_values($targets)) : $allLabels; |
||
| 55 | sort($this->allLabels, SORT_STRING); |
||
| 56 | |||
| 57 | // If there are only two targets, then there is no need to perform OvR |
||
| 58 | if (count($this->allLabels) === 2) { |
||
| 59 | // Init classifier if required. |
||
| 60 | if (count($this->classifiers) === 0) { |
||
| 61 | $this->classifiers[0] = $this->getClassifierCopy(); |
||
| 62 | } |
||
| 63 | |||
| 64 | $this->classifiers[0]->trainBinary($samples, $targets, $this->allLabels); |
||
| 65 | } else { |
||
| 66 | // Train a separate classifier for each label and memorize them |
||
| 67 | |||
| 68 | foreach ($this->allLabels as $label) { |
||
| 69 | // Init classifier if required. |
||
| 70 | if (!isset($this->classifiers[$label])) { |
||
| 71 | $this->classifiers[$label] = $this->getClassifierCopy(); |
||
| 72 | } |
||
| 73 | |||
| 74 | [$binarizedTargets, $classifierLabels] = $this->binarizeTargets($targets, $label); |
||
| 75 | $this->classifiers[$label]->trainBinary($samples, $binarizedTargets, $classifierLabels); |
||
| 76 | } |
||
| 77 | } |
||
| 78 | |||
| 79 | // If the underlying classifier is capable of giving the cost values |
||
| 80 | // during the training, then assign it to the relevant variable |
||
| 81 | // Adding just the first classifier cost values to avoid complex average calculations. |
||
| 82 | $classifierref = reset($this->classifiers); |
||
| 83 | if (method_exists($classifierref, 'getCostValues')) { |
||
| 84 | $this->costValues = $classifierref->getCostValues(); |
||
| 85 | } |
||
| 86 | } |
||
| 87 | |||
| 88 | /** |
||
| 89 | * Returns an instance of the current class after cleaning up OneVsRest stuff. |
||
| 90 | */ |
||
| 91 | protected function getClassifierCopy(): Classifier |
||
| 92 | { |
||
| 93 | // Clone the current classifier, so that |
||
| 94 | // we don't mess up its variables while training |
||
| 95 | // multiple instances of this classifier |
||
| 96 | $classifier = clone $this; |
||
| 97 | $classifier->reset(); |
||
| 98 | |||
| 99 | return $classifier; |
||
|
0 ignored issues
–
show
Bug
Best Practice
introduced
by
Loading history...
|
|||
| 100 | } |
||
| 101 | |||
| 102 | /** |
||
| 103 | * @return mixed |
||
| 104 | */ |
||
| 105 | protected function predictSample(array $sample) |
||
| 106 | { |
||
| 107 | if (count($this->allLabels) === 2) { |
||
| 108 | return $this->classifiers[0]->predictSampleBinary($sample); |
||
| 109 | } |
||
| 110 | |||
| 111 | $probs = []; |
||
| 112 | |||
| 113 | foreach ($this->classifiers as $label => $predictor) { |
||
| 114 | $probs[$label] = $predictor->predictProbability($sample, $label); |
||
| 115 | } |
||
| 116 | |||
| 117 | arsort($probs, SORT_NUMERIC); |
||
| 118 | |||
| 119 | return key($probs); |
||
| 120 | } |
||
| 121 | |||
| 122 | /** |
||
| 123 | * Each classifier should implement this method instead of train(samples, targets) |
||
| 124 | */ |
||
| 125 | abstract protected function trainBinary(array $samples, array $targets, array $labels); |
||
| 126 | |||
| 127 | /** |
||
| 128 | * To be overwritten by OneVsRest classifiers. |
||
| 129 | */ |
||
| 130 | abstract protected function resetBinary(): void; |
||
| 131 | |||
| 132 | /** |
||
| 133 | * Each classifier that make use of OvR approach should be able to |
||
| 134 | * return a probability for a sample to belong to the given label. |
||
| 135 | * |
||
| 136 | * @return mixed |
||
| 137 | */ |
||
| 138 | abstract protected function predictProbability(array $sample, string $label); |
||
| 139 | |||
| 140 | /** |
||
| 141 | * Each classifier should implement this method instead of predictSample() |
||
| 142 | * |
||
| 143 | * @return mixed |
||
| 144 | */ |
||
| 145 | abstract protected function predictSampleBinary(array $sample); |
||
| 146 | |||
| 147 | /** |
||
| 148 | * Groups all targets into two groups: Targets equal to |
||
| 149 | * the given label and the others |
||
| 150 | * |
||
| 151 | * $targets is not passed by reference nor contains objects so this method |
||
| 152 | * changes will not affect the caller $targets array. |
||
| 153 | * |
||
| 154 | * @param mixed $label |
||
| 155 | * |
||
| 156 | * @return array Binarized targets and target's labels |
||
| 157 | */ |
||
| 158 | private function binarizeTargets(array $targets, $label): array |
||
| 159 | { |
||
| 160 | $notLabel = "not_${label}"; |
||
| 161 | foreach ($targets as $key => $target) { |
||
| 162 | $targets[$key] = $target == $label ? $label : $notLabel; |
||
| 163 | } |
||
| 164 | |||
| 165 | $labels = [$label, $notLabel]; |
||
| 166 | |||
| 167 | return [$targets, $labels]; |
||
| 168 | } |
||
| 169 | } |
||
| 170 |