|
1
|
|
|
<?php |
|
2
|
|
|
|
|
3
|
|
|
declare(strict_types=1); |
|
4
|
|
|
|
|
5
|
|
|
namespace Phpml\NeuralNetwork\Training; |
|
6
|
|
|
|
|
7
|
|
|
use Phpml\NeuralNetwork\Node\Neuron; |
|
8
|
|
|
use Phpml\NeuralNetwork\Training\Backpropagation\Sigma; |
|
9
|
|
|
|
|
10
|
|
|
class Backpropagation |
|
11
|
|
|
{ |
|
12
|
|
|
/** |
|
13
|
|
|
* @var float |
|
14
|
|
|
*/ |
|
15
|
|
|
private $learningRate; |
|
16
|
|
|
|
|
17
|
|
|
/** |
|
18
|
|
|
* @var array |
|
19
|
|
|
*/ |
|
20
|
|
|
private $sigmas = []; |
|
21
|
|
|
|
|
22
|
|
|
/** |
|
23
|
|
|
* @var array |
|
24
|
|
|
*/ |
|
25
|
|
|
private $prevSigmas = []; |
|
26
|
|
|
|
|
27
|
|
|
public function __construct(float $learningRate) |
|
28
|
|
|
{ |
|
29
|
|
|
$this->setLearningRate($learningRate); |
|
30
|
|
|
} |
|
31
|
|
|
|
|
32
|
|
|
public function setLearningRate(float $learningRate): void |
|
33
|
|
|
{ |
|
34
|
|
|
$this->learningRate = $learningRate; |
|
35
|
|
|
} |
|
36
|
|
|
|
|
37
|
|
|
public function getLearningRate(): float |
|
38
|
|
|
{ |
|
39
|
|
|
return $this->learningRate; |
|
40
|
|
|
} |
|
41
|
|
|
|
|
42
|
|
|
/** |
|
43
|
|
|
* @param mixed $targetClass |
|
44
|
|
|
*/ |
|
45
|
|
|
public function backpropagate(array $layers, $targetClass): void |
|
46
|
|
|
{ |
|
47
|
|
|
$layersNumber = count($layers); |
|
48
|
|
|
|
|
49
|
|
|
// Backpropagation. |
|
50
|
|
|
for ($i = $layersNumber; $i > 1; --$i) { |
|
51
|
|
|
$this->sigmas = []; |
|
52
|
|
|
foreach ($layers[$i - 1]->getNodes() as $key => $neuron) { |
|
53
|
|
|
if ($neuron instanceof Neuron) { |
|
54
|
|
|
$sigma = $this->getSigma($neuron, $targetClass, $key, $i == $layersNumber); |
|
55
|
|
|
foreach ($neuron->getSynapses() as $synapse) { |
|
56
|
|
|
$synapse->changeWeight($this->learningRate * $sigma * $synapse->getNode()->getOutput()); |
|
57
|
|
|
} |
|
58
|
|
|
} |
|
59
|
|
|
} |
|
60
|
|
|
|
|
61
|
|
|
$this->prevSigmas = $this->sigmas; |
|
62
|
|
|
} |
|
63
|
|
|
|
|
64
|
|
|
// Clean some memory (also it helps make MLP persistency & children more maintainable). |
|
65
|
|
|
$this->sigmas = []; |
|
66
|
|
|
$this->prevSigmas = []; |
|
67
|
|
|
} |
|
68
|
|
|
|
|
69
|
|
|
private function getSigma(Neuron $neuron, int $targetClass, int $key, bool $lastLayer): float |
|
70
|
|
|
{ |
|
71
|
|
|
$neuronOutput = $neuron->getOutput(); |
|
72
|
|
|
$sigma = $neuron->getDerivative(); |
|
73
|
|
|
|
|
74
|
|
|
if ($lastLayer) { |
|
75
|
|
|
$value = 0; |
|
76
|
|
|
if ($targetClass === $key) { |
|
77
|
|
|
$value = 1; |
|
78
|
|
|
} |
|
79
|
|
|
|
|
80
|
|
|
$sigma *= ($value - $neuronOutput); |
|
81
|
|
|
} else { |
|
82
|
|
|
$sigma *= $this->getPrevSigma($neuron); |
|
83
|
|
|
} |
|
84
|
|
|
|
|
85
|
|
|
$this->sigmas[] = new Sigma($neuron, $sigma); |
|
86
|
|
|
|
|
87
|
|
|
return $sigma; |
|
88
|
|
|
} |
|
89
|
|
|
|
|
90
|
|
|
private function getPrevSigma(Neuron $neuron): float |
|
91
|
|
|
{ |
|
92
|
|
|
$sigma = 0.0; |
|
93
|
|
|
|
|
94
|
|
|
foreach ($this->prevSigmas as $neuronSigma) { |
|
95
|
|
|
$sigma += $neuronSigma->getSigmaForNeuron($neuron); |
|
96
|
|
|
} |
|
97
|
|
|
|
|
98
|
|
|
return $sigma; |
|
99
|
|
|
} |
|
100
|
|
|
} |
|
101
|
|
|
|