|
1
|
|
|
<?php |
|
2
|
|
|
|
|
3
|
|
|
declare(strict_types=1); |
|
4
|
|
|
|
|
5
|
|
|
namespace Phpml\NeuralNetwork\Network; |
|
6
|
|
|
|
|
7
|
|
|
use Phpml\Estimator; |
|
8
|
|
|
use Phpml\Exception\InvalidArgumentException; |
|
9
|
|
|
use Phpml\Helper\Predictable; |
|
10
|
|
|
use Phpml\IncrementalEstimator; |
|
11
|
|
|
use Phpml\NeuralNetwork\ActivationFunction; |
|
12
|
|
|
use Phpml\NeuralNetwork\ActivationFunction\Sigmoid; |
|
13
|
|
|
use Phpml\NeuralNetwork\Layer; |
|
14
|
|
|
use Phpml\NeuralNetwork\Node\Bias; |
|
15
|
|
|
use Phpml\NeuralNetwork\Node\Input; |
|
16
|
|
|
use Phpml\NeuralNetwork\Node\Neuron; |
|
17
|
|
|
use Phpml\NeuralNetwork\Node\Neuron\Synapse; |
|
18
|
|
|
use Phpml\NeuralNetwork\Training\Backpropagation; |
|
19
|
|
|
|
|
20
|
|
|
abstract class MultilayerPerceptron extends LayeredNetwork implements Estimator, IncrementalEstimator |
|
21
|
|
|
{ |
|
22
|
|
|
use Predictable; |
|
23
|
|
|
|
|
24
|
|
|
/** |
|
25
|
|
|
* @var array |
|
26
|
|
|
*/ |
|
27
|
|
|
protected $classes = []; |
|
28
|
|
|
|
|
29
|
|
|
/** |
|
30
|
|
|
* @var ActivationFunction|null |
|
31
|
|
|
*/ |
|
32
|
|
|
protected $activationFunction; |
|
33
|
|
|
|
|
34
|
|
|
/** |
|
35
|
|
|
* @var Backpropagation |
|
36
|
|
|
*/ |
|
37
|
|
|
protected $backpropagation; |
|
38
|
|
|
|
|
39
|
|
|
/** |
|
40
|
|
|
* @var int |
|
41
|
|
|
*/ |
|
42
|
|
|
private $inputLayerFeatures; |
|
43
|
|
|
|
|
44
|
|
|
/** |
|
45
|
|
|
* @var array |
|
46
|
|
|
*/ |
|
47
|
|
|
private $hiddenLayers = []; |
|
48
|
|
|
|
|
49
|
|
|
/** |
|
50
|
|
|
* @var float |
|
51
|
|
|
*/ |
|
52
|
|
|
private $learningRate; |
|
53
|
|
|
|
|
54
|
|
|
/** |
|
55
|
|
|
* @var int |
|
56
|
|
|
*/ |
|
57
|
|
|
private $iterations; |
|
58
|
|
|
|
|
59
|
|
|
/** |
|
60
|
|
|
* @throws InvalidArgumentException |
|
61
|
|
|
*/ |
|
62
|
|
|
public function __construct( |
|
63
|
|
|
int $inputLayerFeatures, |
|
64
|
|
|
array $hiddenLayers, |
|
65
|
|
|
array $classes, |
|
66
|
|
|
int $iterations = 10000, |
|
67
|
|
|
?ActivationFunction $activationFunction = null, |
|
68
|
|
|
float $learningRate = 1. |
|
69
|
|
|
) { |
|
70
|
|
|
if (count($hiddenLayers) === 0) { |
|
71
|
|
|
throw new InvalidArgumentException('Provide at least 1 hidden layer'); |
|
72
|
|
|
} |
|
73
|
|
|
|
|
74
|
|
|
if (count($classes) < 2) { |
|
75
|
|
|
throw new InvalidArgumentException('Provide at least 2 different classes'); |
|
76
|
|
|
} |
|
77
|
|
|
|
|
78
|
|
|
if (count($classes) !== count(array_unique($classes))) { |
|
79
|
|
|
throw new InvalidArgumentException('Classes must be unique'); |
|
80
|
|
|
} |
|
81
|
|
|
|
|
82
|
|
|
$this->classes = array_values($classes); |
|
83
|
|
|
$this->iterations = $iterations; |
|
84
|
|
|
$this->inputLayerFeatures = $inputLayerFeatures; |
|
85
|
|
|
$this->hiddenLayers = $hiddenLayers; |
|
86
|
|
|
$this->activationFunction = $activationFunction; |
|
87
|
|
|
$this->learningRate = $learningRate; |
|
88
|
|
|
|
|
89
|
|
|
$this->initNetwork(); |
|
90
|
|
|
} |
|
91
|
|
|
|
|
92
|
|
|
public function train(array $samples, array $targets): void |
|
93
|
|
|
{ |
|
94
|
|
|
$this->reset(); |
|
95
|
|
|
$this->initNetwork(); |
|
96
|
|
|
$this->partialTrain($samples, $targets, $this->classes); |
|
97
|
|
|
} |
|
98
|
|
|
|
|
99
|
|
|
/** |
|
100
|
|
|
* @throws InvalidArgumentException |
|
101
|
|
|
*/ |
|
102
|
|
|
public function partialTrain(array $samples, array $targets, array $classes = []): void |
|
103
|
|
|
{ |
|
104
|
|
|
if (count($classes) > 0 && array_values($classes) !== $this->classes) { |
|
105
|
|
|
// We require the list of classes in the constructor. |
|
106
|
|
|
throw new InvalidArgumentException( |
|
107
|
|
|
'The provided classes don\'t match the classes provided in the constructor' |
|
108
|
|
|
); |
|
109
|
|
|
} |
|
110
|
|
|
|
|
111
|
|
|
for ($i = 0; $i < $this->iterations; ++$i) { |
|
112
|
|
|
$this->trainSamples($samples, $targets); |
|
113
|
|
|
} |
|
114
|
|
|
} |
|
115
|
|
|
|
|
116
|
|
|
public function setLearningRate(float $learningRate): void |
|
117
|
|
|
{ |
|
118
|
|
|
$this->learningRate = $learningRate; |
|
119
|
|
|
$this->backpropagation->setLearningRate($this->learningRate); |
|
120
|
|
|
} |
|
121
|
|
|
|
|
122
|
|
|
public function getOutput(): array |
|
123
|
|
|
{ |
|
124
|
|
|
$result = []; |
|
125
|
|
|
foreach ($this->getOutputLayer()->getNodes() as $i => $neuron) { |
|
126
|
|
|
$result[$this->classes[$i]] = $neuron->getOutput(); |
|
127
|
|
|
} |
|
128
|
|
|
|
|
129
|
|
|
return $result; |
|
130
|
|
|
} |
|
131
|
|
|
|
|
132
|
|
|
public function getLearningRate(): float |
|
133
|
|
|
{ |
|
134
|
|
|
return $this->learningRate; |
|
135
|
|
|
} |
|
136
|
|
|
|
|
137
|
|
|
public function getBackpropagation(): Backpropagation |
|
138
|
|
|
{ |
|
139
|
|
|
return $this->backpropagation; |
|
140
|
|
|
} |
|
141
|
|
|
|
|
142
|
|
|
/** |
|
143
|
|
|
* @param mixed $target |
|
144
|
|
|
*/ |
|
145
|
|
|
abstract protected function trainSample(array $sample, $target): void; |
|
146
|
|
|
|
|
147
|
|
|
/** |
|
148
|
|
|
* @return mixed |
|
149
|
|
|
*/ |
|
150
|
|
|
abstract protected function predictSample(array $sample); |
|
151
|
|
|
|
|
152
|
|
|
protected function reset(): void |
|
153
|
|
|
{ |
|
154
|
|
|
$this->removeLayers(); |
|
155
|
|
|
} |
|
156
|
|
|
|
|
157
|
|
|
private function initNetwork(): void |
|
158
|
|
|
{ |
|
159
|
|
|
$this->addInputLayer($this->inputLayerFeatures); |
|
160
|
|
|
$this->addNeuronLayers($this->hiddenLayers, $this->activationFunction); |
|
161
|
|
|
|
|
162
|
|
|
// Sigmoid function for the output layer as we want a value from 0 to 1. |
|
163
|
|
|
$sigmoid = new Sigmoid(); |
|
164
|
|
|
$this->addNeuronLayers([count($this->classes)], $sigmoid); |
|
165
|
|
|
|
|
166
|
|
|
$this->addBiasNodes(); |
|
167
|
|
|
$this->generateSynapses(); |
|
168
|
|
|
|
|
169
|
|
|
$this->backpropagation = new Backpropagation($this->learningRate); |
|
170
|
|
|
} |
|
171
|
|
|
|
|
172
|
|
|
private function addInputLayer(int $nodes): void |
|
173
|
|
|
{ |
|
174
|
|
|
$this->addLayer(new Layer($nodes, Input::class)); |
|
175
|
|
|
} |
|
176
|
|
|
|
|
177
|
|
|
private function addNeuronLayers(array $layers, ?ActivationFunction $defaultActivationFunction = null): void |
|
178
|
|
|
{ |
|
179
|
|
|
foreach ($layers as $layer) { |
|
180
|
|
|
if (is_array($layer)) { |
|
181
|
|
|
$function = $layer[1] instanceof ActivationFunction ? $layer[1] : $defaultActivationFunction; |
|
182
|
|
|
$this->addLayer(new Layer($layer[0], Neuron::class, $function)); |
|
183
|
|
|
} elseif ($layer instanceof Layer) { |
|
184
|
|
|
$this->addLayer($layer); |
|
185
|
|
|
} else { |
|
186
|
|
|
$this->addLayer(new Layer($layer, Neuron::class, $defaultActivationFunction)); |
|
187
|
|
|
} |
|
188
|
|
|
} |
|
189
|
|
|
} |
|
190
|
|
|
|
|
191
|
|
|
private function generateSynapses(): void |
|
192
|
|
|
{ |
|
193
|
|
|
$layersNumber = count($this->layers) - 1; |
|
194
|
|
|
for ($i = 0; $i < $layersNumber; ++$i) { |
|
195
|
|
|
$currentLayer = $this->layers[$i]; |
|
196
|
|
|
$nextLayer = $this->layers[$i + 1]; |
|
197
|
|
|
$this->generateLayerSynapses($nextLayer, $currentLayer); |
|
198
|
|
|
} |
|
199
|
|
|
} |
|
200
|
|
|
|
|
201
|
|
|
private function addBiasNodes(): void |
|
202
|
|
|
{ |
|
203
|
|
|
$biasLayers = count($this->layers) - 1; |
|
204
|
|
|
for ($i = 0; $i < $biasLayers; ++$i) { |
|
205
|
|
|
$this->layers[$i]->addNode(new Bias()); |
|
206
|
|
|
} |
|
207
|
|
|
} |
|
208
|
|
|
|
|
209
|
|
|
private function generateLayerSynapses(Layer $nextLayer, Layer $currentLayer): void |
|
210
|
|
|
{ |
|
211
|
|
|
foreach ($nextLayer->getNodes() as $nextNeuron) { |
|
212
|
|
|
if ($nextNeuron instanceof Neuron) { |
|
213
|
|
|
$this->generateNeuronSynapses($currentLayer, $nextNeuron); |
|
214
|
|
|
} |
|
215
|
|
|
} |
|
216
|
|
|
} |
|
217
|
|
|
|
|
218
|
|
|
private function generateNeuronSynapses(Layer $currentLayer, Neuron $nextNeuron): void |
|
219
|
|
|
{ |
|
220
|
|
|
foreach ($currentLayer->getNodes() as $currentNeuron) { |
|
221
|
|
|
$nextNeuron->addSynapse(new Synapse($currentNeuron)); |
|
222
|
|
|
} |
|
223
|
|
|
} |
|
224
|
|
|
|
|
225
|
|
|
private function trainSamples(array $samples, array $targets): void |
|
226
|
|
|
{ |
|
227
|
|
|
foreach ($targets as $key => $target) { |
|
228
|
|
|
$this->trainSample($samples[$key], $target); |
|
229
|
|
|
} |
|
230
|
|
|
} |
|
231
|
|
|
} |
|
232
|
|
|
|