1
|
|
|
<?php |
2
|
|
|
|
3
|
|
|
declare (strict_types = 1); |
4
|
|
|
|
5
|
|
|
namespace Phpml\Clustering\KMeans; |
6
|
|
|
|
7
|
|
|
use Phpml\Clustering\KMeans; |
8
|
|
|
use SplObjectStorage; |
9
|
|
|
use LogicException; |
10
|
|
|
use InvalidArgumentException; |
11
|
|
|
|
12
|
|
|
class Space extends SplObjectStorage |
13
|
|
|
{ |
14
|
|
|
/** |
15
|
|
|
* @var int |
16
|
|
|
*/ |
17
|
|
|
protected $dimension; |
18
|
|
|
|
19
|
|
|
/** |
20
|
|
|
* @param $dimension |
21
|
|
|
*/ |
22
|
|
|
public function __construct($dimension) |
23
|
|
|
{ |
24
|
|
|
if ($dimension < 1) { |
25
|
|
|
throw new LogicException('a space dimension cannot be null or negative'); |
26
|
|
|
} |
27
|
|
|
|
28
|
|
|
$this->dimension = $dimension; |
29
|
|
|
} |
30
|
|
|
|
31
|
|
|
/** |
32
|
|
|
* @return array |
33
|
|
|
*/ |
34
|
|
|
public function toArray() |
35
|
|
|
{ |
36
|
|
|
$points = []; |
37
|
|
|
foreach ($this as $point) { |
38
|
|
|
$points[] = $point->toArray(); |
39
|
|
|
} |
40
|
|
|
|
41
|
|
|
return ['points' => $points]; |
42
|
|
|
} |
43
|
|
|
|
44
|
|
|
/** |
45
|
|
|
* @param array $coordinates |
46
|
|
|
* |
47
|
|
|
* @return Point |
48
|
|
|
*/ |
49
|
|
|
public function newPoint(array $coordinates) |
50
|
|
|
{ |
51
|
|
|
if (count($coordinates) != $this->dimension) { |
52
|
|
|
throw new LogicException('('.implode(',', $coordinates).') is not a point of this space'); |
53
|
|
|
} |
54
|
|
|
|
55
|
|
|
return new Point($coordinates); |
56
|
|
|
} |
57
|
|
|
|
58
|
|
|
/** |
59
|
|
|
* @param array $coordinates |
60
|
|
|
* @param null $data |
61
|
|
|
*/ |
62
|
|
|
public function addPoint(array $coordinates, $data = null) |
63
|
|
|
{ |
64
|
|
|
return $this->attach($this->newPoint($coordinates), $data); |
65
|
|
|
} |
66
|
|
|
|
67
|
|
|
/** |
68
|
|
|
* @param object $point |
69
|
|
|
* @param null $data |
70
|
|
|
*/ |
71
|
|
|
public function attach($point, $data = null) |
72
|
|
|
{ |
73
|
|
|
if (!$point instanceof Point) { |
74
|
|
|
throw new InvalidArgumentException('can only attach points to spaces'); |
75
|
|
|
} |
76
|
|
|
|
77
|
|
|
return parent::attach($point, $data); |
78
|
|
|
} |
79
|
|
|
|
80
|
|
|
/** |
81
|
|
|
* @return int |
82
|
|
|
*/ |
83
|
|
|
public function getDimension() |
84
|
|
|
{ |
85
|
|
|
return $this->dimension; |
86
|
|
|
} |
87
|
|
|
|
88
|
|
|
/** |
89
|
|
|
* @return array|bool |
90
|
|
|
*/ |
91
|
|
|
public function getBoundaries() |
92
|
|
|
{ |
93
|
|
|
if (!count($this)) { |
94
|
|
|
return false; |
95
|
|
|
} |
96
|
|
|
|
97
|
|
|
$min = $this->newPoint(array_fill(0, $this->dimension, null)); |
98
|
|
|
$max = $this->newPoint(array_fill(0, $this->dimension, null)); |
99
|
|
|
|
100
|
|
|
foreach ($this as $point) { |
101
|
|
|
for ($n = 0; $n < $this->dimension; ++$n) { |
102
|
|
|
($min[$n] > $point[$n] || $min[$n] === null) && $min[$n] = $point[$n]; |
103
|
|
|
($max[$n] < $point[$n] || $max[$n] === null) && $max[$n] = $point[$n]; |
104
|
|
|
} |
105
|
|
|
} |
106
|
|
|
|
107
|
|
|
return array($min, $max); |
108
|
|
|
} |
109
|
|
|
|
110
|
|
|
/** |
111
|
|
|
* @param Point $min |
112
|
|
|
* @param Point $max |
113
|
|
|
* |
114
|
|
|
* @return Point |
115
|
|
|
*/ |
116
|
|
|
public function getRandomPoint(Point $min, Point $max) |
117
|
|
|
{ |
118
|
|
|
$point = $this->newPoint(array_fill(0, $this->dimension, null)); |
119
|
|
|
|
120
|
|
|
for ($n = 0; $n < $this->dimension; ++$n) { |
121
|
|
|
$point[$n] = rand($min[$n], $max[$n]); |
122
|
|
|
} |
123
|
|
|
|
124
|
|
|
return $point; |
125
|
|
|
} |
126
|
|
|
|
127
|
|
|
/** |
128
|
|
|
* @param $nbClusters |
129
|
|
|
* @param int $seed |
130
|
|
|
* @param null $iterationCallback |
131
|
|
|
* |
132
|
|
|
* @return array|Cluster[] |
133
|
|
|
*/ |
134
|
|
|
public function solve($nbClusters, $seed = KMeans::INIT_RANDOM, $iterationCallback = null) |
135
|
|
|
{ |
136
|
|
|
if ($iterationCallback && !is_callable($iterationCallback)) { |
137
|
|
|
throw new InvalidArgumentException('invalid iteration callback'); |
138
|
|
|
} |
139
|
|
|
|
140
|
|
|
// initialize K clusters |
141
|
|
|
$clusters = $this->initializeClusters($nbClusters, $seed); |
142
|
|
|
|
143
|
|
|
// there's only one cluster, clusterization has no meaning |
144
|
|
|
if (count($clusters) == 1) { |
145
|
|
|
return $clusters[0]; |
146
|
|
|
} |
147
|
|
|
|
148
|
|
|
// until convergence is reached |
149
|
|
|
do { |
150
|
|
|
$iterationCallback && $iterationCallback($this, $clusters); |
151
|
|
|
} while ($this->iterate($clusters)); |
152
|
|
|
|
153
|
|
|
// clustering is done. |
154
|
|
|
return $clusters; |
155
|
|
|
} |
156
|
|
|
|
157
|
|
|
/** |
158
|
|
|
* @param $nbClusters |
159
|
|
|
* @param $seed |
160
|
|
|
* |
161
|
|
|
* @return array |
162
|
|
|
*/ |
163
|
|
|
protected function initializeClusters($nbClusters, $seed) |
164
|
|
|
{ |
165
|
|
|
if ($nbClusters <= 0) { |
166
|
|
|
throw new InvalidArgumentException('invalid clusters number'); |
167
|
|
|
} |
168
|
|
|
|
169
|
|
|
switch ($seed) { |
170
|
|
|
// the default seeding method chooses completely random centroid |
171
|
|
|
case KMeans::INIT_RANDOM: |
172
|
|
|
// get the space boundaries to avoid placing clusters centroid too far from points |
173
|
|
|
list($min, $max) = $this->getBoundaries(); |
174
|
|
|
|
175
|
|
|
// initialize N clusters with a random point within space boundaries |
176
|
|
|
for ($n = 0; $n < $nbClusters; ++$n) { |
177
|
|
|
$clusters[] = new Cluster($this, $this->getRandomPoint($min, $max)->getCoordinates()); |
|
|
|
|
178
|
|
|
} |
179
|
|
|
|
180
|
|
|
break; |
181
|
|
|
|
182
|
|
|
// the DASV seeding method consists of finding good initial centroids for the clusters |
183
|
|
|
case KMeans::INIT_KMEANS_PLUS_PLUS: |
184
|
|
|
// find a random point |
185
|
|
|
$position = rand(1, count($this)); |
186
|
|
|
for ($i = 1, $this->rewind(); $i < $position && $this->valid(); $i++, $this->next()); |
187
|
|
|
$clusters[] = new Cluster($this, $this->current()->getCoordinates()); |
|
|
|
|
188
|
|
|
|
189
|
|
|
// retains the distances between points and their closest clusters |
190
|
|
|
$distances = new SplObjectStorage(); |
191
|
|
|
|
192
|
|
|
// create k clusters |
193
|
|
|
for ($i = 1; $i < $nbClusters; ++$i) { |
194
|
|
|
$sum = 0; |
195
|
|
|
|
196
|
|
|
// for each points, get the distance with the closest centroid already choosen |
197
|
|
|
foreach ($this as $point) { |
198
|
|
|
$distance = $point->getDistanceWith($point->getClosest($clusters)); |
199
|
|
|
$sum += $distances[$point] = $distance; |
200
|
|
|
} |
201
|
|
|
|
202
|
|
|
// choose a new random point using a weighted probability distribution |
203
|
|
|
$sum = rand(0, (int) $sum); |
204
|
|
|
foreach ($this as $point) { |
205
|
|
|
if (($sum -= $distances[$point]) > 0) { |
206
|
|
|
continue; |
207
|
|
|
} |
208
|
|
|
|
209
|
|
|
$clusters[] = new Cluster($this, $point->getCoordinates()); |
210
|
|
|
break; |
211
|
|
|
} |
212
|
|
|
} |
213
|
|
|
|
214
|
|
|
break; |
215
|
|
|
} |
216
|
|
|
|
217
|
|
|
// assing all points to the first cluster |
218
|
|
|
$clusters[0]->attachAll($this); |
|
|
|
|
219
|
|
|
|
220
|
|
|
return $clusters; |
221
|
|
|
} |
222
|
|
|
|
223
|
|
|
/** |
224
|
|
|
* @param $clusters |
225
|
|
|
* |
226
|
|
|
* @return bool |
227
|
|
|
*/ |
228
|
|
|
protected function iterate($clusters) |
229
|
|
|
{ |
230
|
|
|
$continue = false; |
231
|
|
|
|
232
|
|
|
// migration storages |
233
|
|
|
$attach = new SplObjectStorage(); |
234
|
|
|
$detach = new SplObjectStorage(); |
235
|
|
|
|
236
|
|
|
// calculate proximity amongst points and clusters |
237
|
|
|
foreach ($clusters as $cluster) { |
238
|
|
|
foreach ($cluster as $point) { |
239
|
|
|
// find the closest cluster |
240
|
|
|
$closest = $point->getClosest($clusters); |
241
|
|
|
|
242
|
|
|
// move the point from its old cluster to its closest |
243
|
|
|
if ($closest !== $cluster) { |
244
|
|
|
isset($attach[$closest]) || $attach[$closest] = new SplObjectStorage(); |
245
|
|
|
isset($detach[$cluster]) || $detach[$cluster] = new SplObjectStorage(); |
246
|
|
|
|
247
|
|
|
$attach[$closest]->attach($point); |
248
|
|
|
$detach[$cluster]->attach($point); |
249
|
|
|
|
250
|
|
|
$continue = true; |
251
|
|
|
} |
252
|
|
|
} |
253
|
|
|
} |
254
|
|
|
|
255
|
|
|
// perform points migrations |
256
|
|
|
foreach ($attach as $cluster) { |
257
|
|
|
$cluster->attachAll($attach[$cluster]); |
258
|
|
|
} |
259
|
|
|
|
260
|
|
|
foreach ($detach as $cluster) { |
261
|
|
|
$cluster->detachAll($detach[$cluster]); |
262
|
|
|
} |
263
|
|
|
|
264
|
|
|
// update all cluster's centroids |
265
|
|
|
foreach ($clusters as $cluster) { |
266
|
|
|
$cluster->updateCentroid(); |
267
|
|
|
} |
268
|
|
|
|
269
|
|
|
return $continue; |
270
|
|
|
} |
271
|
|
|
} |
272
|
|
|
|
Adding an explicit array definition is generally preferable to implicit array definition as it guarantees a stable state of the code.
Let’s take a look at an example:
As you can see in this example, the array
$myArray
is initialized the first time when the foreach loop is entered. You can also see that the value of thebar
key is only written conditionally; thus, its value might result from a previous iteration.This might or might not be intended. To make your intention clear, your code more readible and to avoid accidental bugs, we recommend to add an explicit initialization $myArray = array() either outside or inside the foreach loop.