@@ -1,4 +1,4 @@ |
||
| 1 | -<?php declare(strict_types=1); |
|
| 1 | +<?php declare(strict_types = 1); |
|
| 2 | 2 | |
| 3 | 3 | namespace Phpml\Classification; |
| 4 | 4 | |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification; |
| 6 | 6 | |
@@ -114,7 +114,7 @@ discard block |
||
| 114 | 114 | { |
| 115 | 115 | $types = []; |
| 116 | 116 | $featureCount = count($samples[0]); |
| 117 | - for ($i=0; $i < $featureCount; $i++) { |
|
| 117 | + for ($i = 0; $i < $featureCount; $i++) { |
|
| 118 | 118 | $values = array_column($samples, $i); |
| 119 | 119 | $isCategorical = self::isCategoricalColumn($values); |
| 120 | 120 | $types[] = $isCategorical ? self::NOMINAL : self::CONTINUOS; |
@@ -138,7 +138,7 @@ discard block |
||
| 138 | 138 | // otherwise group the records so that we can classify the leaf |
| 139 | 139 | // in case maximum depth is reached |
| 140 | 140 | $leftRecords = []; |
| 141 | - $rightRecords= []; |
|
| 141 | + $rightRecords = []; |
|
| 142 | 142 | $remainingTargets = []; |
| 143 | 143 | $prevRecord = null; |
| 144 | 144 | $allSame = true; |
@@ -156,12 +156,12 @@ discard block |
||
| 156 | 156 | if ($split->evaluate($record)) { |
| 157 | 157 | $leftRecords[] = $recordNo; |
| 158 | 158 | } else { |
| 159 | - $rightRecords[]= $recordNo; |
|
| 159 | + $rightRecords[] = $recordNo; |
|
| 160 | 160 | } |
| 161 | 161 | |
| 162 | 162 | // Group remaining targets |
| 163 | 163 | $target = $this->targets[$recordNo]; |
| 164 | - if (! array_key_exists($target, $remainingTargets)) { |
|
| 164 | + if (!array_key_exists($target, $remainingTargets)) { |
|
| 165 | 165 | $remainingTargets[$target] = 1; |
| 166 | 166 | } else { |
| 167 | 167 | $remainingTargets[$target]++; |
@@ -177,7 +177,7 @@ discard block |
||
| 177 | 177 | $split->leftLeaf = $this->getSplitLeaf($leftRecords, $depth + 1); |
| 178 | 178 | } |
| 179 | 179 | if ($rightRecords) { |
| 180 | - $split->rightLeaf= $this->getSplitLeaf($rightRecords, $depth + 1); |
|
| 180 | + $split->rightLeaf = $this->getSplitLeaf($rightRecords, $depth + 1); |
|
| 181 | 181 | } |
| 182 | 182 | } |
| 183 | 183 | return $split; |
@@ -247,7 +247,7 @@ discard block |
||
| 247 | 247 | protected function getSelectedFeatures() |
| 248 | 248 | { |
| 249 | 249 | $allFeatures = range(0, $this->featureCount - 1); |
| 250 | - if ($this->numUsableFeatures == 0 && ! $this->selectedFeatures) { |
|
| 250 | + if ($this->numUsableFeatures == 0 && !$this->selectedFeatures) { |
|
| 251 | 251 | return $allFeatures; |
| 252 | 252 | } |
| 253 | 253 | |
@@ -283,7 +283,7 @@ discard block |
||
| 283 | 283 | $countMatrix[$label][$rowIndex]++; |
| 284 | 284 | } |
| 285 | 285 | $giniParts = [0, 0]; |
| 286 | - for ($i=0; $i<=1; $i++) { |
|
| 286 | + for ($i = 0; $i <= 1; $i++) { |
|
| 287 | 287 | $part = 0; |
| 288 | 288 | $sum = array_sum(array_column($countMatrix, $i)); |
| 289 | 289 | if ($sum > 0) { |
@@ -305,7 +305,7 @@ discard block |
||
| 305 | 305 | // Detect and convert continuous data column values into |
| 306 | 306 | // discrete values by using the median as a threshold value |
| 307 | 307 | $columns = []; |
| 308 | - for ($i=0; $i<$this->featureCount; $i++) { |
|
| 308 | + for ($i = 0; $i < $this->featureCount; $i++) { |
|
| 309 | 309 | $values = array_column($samples, $i); |
| 310 | 310 | if ($this->columnTypes[$i] == self::CONTINUOS) { |
| 311 | 311 | $median = Mean::median($values); |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification\Linear; |
| 6 | 6 | |
@@ -169,7 +169,7 @@ discard block |
||
| 169 | 169 | // Update bias |
| 170 | 170 | $this->weights[0] += $update * $this->learningRate; // Bias |
| 171 | 171 | // Update other weights |
| 172 | - for ($i=1; $i <= $this->featureCount; $i++) { |
|
| 172 | + for ($i = 1; $i <= $this->featureCount; $i++) { |
|
| 173 | 173 | $this->weights[$i] += $update * $sample[$i - 1] * $this->learningRate; |
| 174 | 174 | } |
| 175 | 175 | } |
@@ -202,7 +202,7 @@ discard block |
||
| 202 | 202 | { |
| 203 | 203 | // Check for early stop: No change larger than 1e-5 |
| 204 | 204 | $diff = array_map( |
| 205 | - function ($w1, $w2) { |
|
| 205 | + function($w1, $w2) { |
|
| 206 | 206 | return abs($w1 - $w2) > 1e-5 ? 1 : 0; |
| 207 | 207 | }, |
| 208 | 208 | $oldWeights, $this->weights); |
@@ -259,6 +259,6 @@ discard block |
||
| 259 | 259 | |
| 260 | 260 | $predictedClass = $this->outputClass($sample); |
| 261 | 261 | |
| 262 | - return $this->labels[ $predictedClass ]; |
|
| 262 | + return $this->labels[$predictedClass]; |
|
| 263 | 263 | } |
| 264 | 264 | } |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification\Linear; |
| 6 | 6 | |
@@ -83,7 +83,7 @@ discard block |
||
| 83 | 83 | $labels = array_count_values($this->targets); |
| 84 | 84 | $this->labels = array_keys($labels); |
| 85 | 85 | if (count($this->labels) != 2) { |
| 86 | - throw new \Exception("DecisionStump can classify between two classes only:" . implode(',', $this->labels)); |
|
| 86 | + throw new \Exception("DecisionStump can classify between two classes only:".implode(',', $this->labels)); |
|
| 87 | 87 | } |
| 88 | 88 | |
| 89 | 89 | // If a column index is given, it should be among the existing columns |
@@ -160,8 +160,8 @@ discard block |
||
| 160 | 160 | } |
| 161 | 161 | |
| 162 | 162 | // Try other possible points one by one |
| 163 | - for ($step = $minValue; $step <= $maxValue; $step+= $stepSize) { |
|
| 164 | - $threshold = (float)$step; |
|
| 163 | + for ($step = $minValue; $step <= $maxValue; $step += $stepSize) { |
|
| 164 | + $threshold = (float) $step; |
|
| 165 | 165 | $errorRate = $this->calculateErrorRate($threshold, $operator, $values); |
| 166 | 166 | if ($errorRate < $split['trainingErrorRate']) { |
| 167 | 167 | $split = ['value' => $threshold, 'operator' => $operator, |
@@ -183,7 +183,7 @@ discard block |
||
| 183 | 183 | { |
| 184 | 184 | $values = array_column($this->samples, $col); |
| 185 | 185 | $valueCounts = array_count_values($values); |
| 186 | - $distinctVals= array_keys($valueCounts); |
|
| 186 | + $distinctVals = array_keys($valueCounts); |
|
| 187 | 187 | |
| 188 | 188 | $split = null; |
| 189 | 189 | |
@@ -238,7 +238,7 @@ discard block |
||
| 238 | 238 | $total = (float) array_sum($this->weights); |
| 239 | 239 | $wrong = 0.0; |
| 240 | 240 | $leftLabel = $this->labels[0]; |
| 241 | - $rightLabel= $this->labels[1]; |
|
| 241 | + $rightLabel = $this->labels[1]; |
|
| 242 | 242 | foreach ($values as $index => $value) { |
| 243 | 243 | if ($this->evaluate($threshold, $operator, $value)) { |
| 244 | 244 | $predicted = $leftLabel; |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification\Ensemble; |
| 6 | 6 | |
@@ -173,15 +173,15 @@ discard block |
||
| 173 | 173 | { |
| 174 | 174 | $weights = $this->weights; |
| 175 | 175 | $std = StandardDeviation::population($weights); |
| 176 | - $mean= Mean::arithmetic($weights); |
|
| 176 | + $mean = Mean::arithmetic($weights); |
|
| 177 | 177 | $min = min($weights); |
| 178 | - $minZ= (int)round(($min - $mean) / $std); |
|
| 178 | + $minZ = (int) round(($min - $mean) / $std); |
|
| 179 | 179 | |
| 180 | 180 | $samples = []; |
| 181 | 181 | $targets = []; |
| 182 | 182 | foreach ($weights as $index => $weight) { |
| 183 | - $z = (int)round(($weight - $mean) / $std) - $minZ + 1; |
|
| 184 | - for ($i=0; $i < $z; $i++) { |
|
| 183 | + $z = (int) round(($weight - $mean) / $std) - $minZ + 1; |
|
| 184 | + for ($i = 0; $i < $z; $i++) { |
|
| 185 | 185 | if (rand(0, 1) == 0) { |
| 186 | 186 | continue; |
| 187 | 187 | } |
@@ -260,6 +260,6 @@ discard block |
||
| 260 | 260 | $sum += $h * $alpha; |
| 261 | 261 | } |
| 262 | 262 | |
| 263 | - return $this->labels[ $sum > 0 ? 1 : -1]; |
|
| 263 | + return $this->labels[$sum > 0 ? 1 : -1]; |
|
| 264 | 264 | } |
| 265 | 265 | } |