@@ -166,7 +166,7 @@ discard block |
||
166 | 166 | |
167 | 167 | /** |
168 | 168 | * @param array $records |
169 | - * @return DecisionTreeLeaf[] |
|
169 | + * @return null|DecisionTreeLeaf |
|
170 | 170 | */ |
171 | 171 | protected function getBestSplit($records) |
172 | 172 | { |
@@ -354,7 +354,6 @@ discard block |
||
354 | 354 | * each column in the given dataset. The importance values are |
355 | 355 | * normalized and their total makes 1.<br/> |
356 | 356 | * |
357 | - * @param array $labels |
|
358 | 357 | * @return array |
359 | 358 | */ |
360 | 359 | public function getFeatureImportances() |
@@ -394,7 +393,6 @@ discard block |
||
394 | 393 | * |
395 | 394 | * @param int $column |
396 | 395 | * @param DecisionTreeLeaf |
397 | - * @param array $collected |
|
398 | 396 | * |
399 | 397 | * @return array |
400 | 398 | */ |
@@ -75,7 +75,7 @@ |
||
75 | 75 | * |
76 | 76 | * Learning rate should be a float value between 0.0(exclusive) and 1.0(inclusive) <br> |
77 | 77 | * Maximum number of iterations can be an integer value greater than 0 |
78 | - * @param int $learningRate |
|
78 | + * @param double $learningRate |
|
79 | 79 | * @param int $maxIterations |
80 | 80 | */ |
81 | 81 | public function __construct(float $learningRate = 0.001, int $maxIterations = 1000, |
@@ -5,7 +5,6 @@ |
||
5 | 5 | namespace Phpml\Classification\Linear; |
6 | 6 | |
7 | 7 | use Phpml\Helper\Predictable; |
8 | -use Phpml\Helper\Trainable; |
|
9 | 8 | use Phpml\Classification\Classifier; |
10 | 9 | use Phpml\Preprocessing\Normalizer; |
11 | 10 |
@@ -226,7 +226,7 @@ |
||
226 | 226 | /** |
227 | 227 | * |
228 | 228 | * @param type $leftValue |
229 | - * @param type $operator |
|
229 | + * @param string $operator |
|
230 | 230 | * @param type $rightValue |
231 | 231 | * |
232 | 232 | * @return boolean |