Complex classes like DecisionTree often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes. You can also have a look at the cohesion graph to spot any un-connected, or weakly-connected components.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
While breaking up the class, it is a good idea to analyze how other classes use DecisionTree, and based on these observations, apply Extract Interface, too.
1 | <?php |
||
13 | class DecisionTree implements Classifier |
||
14 | { |
||
15 | use Trainable; |
||
16 | use Predictable; |
||
17 | |||
18 | public const CONTINUOUS = 1; |
||
19 | |||
20 | public const NOMINAL = 2; |
||
21 | |||
22 | /** |
||
23 | * @var int |
||
24 | */ |
||
25 | public $actualDepth = 0; |
||
26 | |||
27 | /** |
||
28 | * @var array |
||
29 | */ |
||
30 | protected $columnTypes = []; |
||
31 | |||
32 | /** |
||
33 | * @var DecisionTreeLeaf |
||
34 | */ |
||
35 | protected $tree; |
||
36 | |||
37 | /** |
||
38 | * @var int |
||
39 | */ |
||
40 | protected $maxDepth; |
||
41 | |||
42 | /** |
||
43 | * @var array |
||
44 | */ |
||
45 | private $labels = []; |
||
46 | |||
47 | /** |
||
48 | * @var int |
||
49 | */ |
||
50 | private $featureCount = 0; |
||
51 | |||
52 | /** |
||
53 | * @var int |
||
54 | */ |
||
55 | private $numUsableFeatures = 0; |
||
56 | |||
57 | /** |
||
58 | * @var array |
||
59 | */ |
||
60 | private $selectedFeatures = []; |
||
61 | |||
62 | /** |
||
63 | * @var array|null |
||
64 | */ |
||
65 | private $featureImportances; |
||
66 | |||
67 | /** |
||
68 | * @var array |
||
69 | */ |
||
70 | private $columnNames = []; |
||
71 | |||
72 | public function __construct(int $maxDepth = 10) |
||
73 | { |
||
74 | $this->maxDepth = $maxDepth; |
||
75 | } |
||
76 | |||
77 | public function train(array $samples, array $targets): void |
||
78 | { |
||
79 | $this->samples = array_merge($this->samples, $samples); |
||
80 | $this->targets = array_merge($this->targets, $targets); |
||
81 | |||
82 | $this->featureCount = count($this->samples[0]); |
||
83 | $this->columnTypes = self::getColumnTypes($this->samples); |
||
84 | $this->labels = array_keys(array_count_values($this->targets)); |
||
85 | $this->tree = $this->getSplitLeaf(range(0, count($this->samples) - 1)); |
||
86 | |||
87 | // Each time the tree is trained, feature importances are reset so that |
||
88 | // we will have to compute it again depending on the new data |
||
89 | $this->featureImportances = null; |
||
90 | |||
91 | // If column names are given or computed before, then there is no |
||
92 | // need to init it and accidentally remove the previous given names |
||
93 | if ($this->columnNames === []) { |
||
94 | $this->columnNames = range(0, $this->featureCount - 1); |
||
95 | } elseif (count($this->columnNames) > $this->featureCount) { |
||
96 | $this->columnNames = array_slice($this->columnNames, 0, $this->featureCount); |
||
97 | } elseif (count($this->columnNames) < $this->featureCount) { |
||
98 | $this->columnNames = array_merge( |
||
99 | $this->columnNames, |
||
100 | range(count($this->columnNames), $this->featureCount - 1) |
||
101 | ); |
||
102 | } |
||
103 | } |
||
104 | |||
105 | public static function getColumnTypes(array $samples): array |
||
106 | { |
||
107 | $types = []; |
||
108 | $featureCount = count($samples[0]); |
||
109 | for ($i = 0; $i < $featureCount; ++$i) { |
||
110 | $values = array_column($samples, $i); |
||
111 | $isCategorical = self::isCategoricalColumn($values); |
||
112 | $types[] = $isCategorical ? self::NOMINAL : self::CONTINUOUS; |
||
113 | } |
||
114 | |||
115 | return $types; |
||
116 | } |
||
117 | |||
118 | /** |
||
119 | * @param mixed $baseValue |
||
120 | */ |
||
121 | public function getGiniIndex($baseValue, array $colValues, array $targets): float |
||
122 | { |
||
123 | $countMatrix = []; |
||
124 | foreach ($this->labels as $label) { |
||
125 | $countMatrix[$label] = [0, 0]; |
||
126 | } |
||
127 | |||
128 | foreach ($colValues as $index => $value) { |
||
129 | $label = $targets[$index]; |
||
130 | $rowIndex = $value === $baseValue ? 0 : 1; |
||
131 | ++$countMatrix[$label][$rowIndex]; |
||
132 | } |
||
133 | |||
134 | $giniParts = [0, 0]; |
||
135 | for ($i = 0; $i <= 1; ++$i) { |
||
136 | $part = 0; |
||
137 | $sum = array_sum(array_column($countMatrix, $i)); |
||
138 | if ($sum > 0) { |
||
139 | foreach ($this->labels as $label) { |
||
140 | $part += pow($countMatrix[$label][$i] / (float) $sum, 2); |
||
141 | } |
||
142 | } |
||
143 | |||
144 | $giniParts[$i] = (1 - $part) * $sum; |
||
145 | } |
||
146 | |||
147 | return array_sum($giniParts) / count($colValues); |
||
148 | } |
||
149 | |||
150 | /** |
||
151 | * This method is used to set number of columns to be used |
||
152 | * when deciding a split at an internal node of the tree. <br> |
||
153 | * If the value is given 0, then all features are used (default behaviour), |
||
154 | * otherwise the given value will be used as a maximum for number of columns |
||
155 | * randomly selected for each split operation. |
||
156 | * |
||
157 | * @return $this |
||
158 | * |
||
159 | * @throws InvalidArgumentException |
||
160 | */ |
||
161 | public function setNumFeatures(int $numFeatures) |
||
162 | { |
||
163 | if ($numFeatures < 0) { |
||
164 | throw new InvalidArgumentException('Selected column count should be greater or equal to zero'); |
||
165 | } |
||
166 | |||
167 | $this->numUsableFeatures = $numFeatures; |
||
168 | |||
169 | return $this; |
||
170 | } |
||
171 | |||
172 | /** |
||
173 | * A string array to represent columns. Useful when HTML output or |
||
174 | * column importances are desired to be inspected. |
||
175 | * |
||
176 | * @return $this |
||
177 | * |
||
178 | * @throws InvalidArgumentException |
||
179 | */ |
||
180 | public function setColumnNames(array $names) |
||
181 | { |
||
182 | if ($this->featureCount !== 0 && count($names) !== $this->featureCount) { |
||
183 | throw new InvalidArgumentException(sprintf('Length of the given array should be equal to feature count %s', $this->featureCount)); |
||
184 | } |
||
185 | |||
186 | $this->columnNames = $names; |
||
187 | |||
188 | return $this; |
||
189 | } |
||
190 | |||
191 | public function getHtml(): string |
||
192 | { |
||
193 | return $this->tree->getHTML($this->columnNames); |
||
194 | } |
||
195 | |||
196 | /** |
||
197 | * This will return an array including an importance value for |
||
198 | * each column in the given dataset. The importance values are |
||
199 | * normalized and their total makes 1.<br/> |
||
200 | */ |
||
201 | public function getFeatureImportances(): array |
||
202 | { |
||
203 | if ($this->featureImportances !== null) { |
||
204 | return $this->featureImportances; |
||
205 | } |
||
206 | |||
207 | $sampleCount = count($this->samples); |
||
208 | $this->featureImportances = []; |
||
209 | foreach ($this->columnNames as $column => $columnName) { |
||
210 | $nodes = $this->getSplitNodesByColumn($column, $this->tree); |
||
211 | |||
212 | $importance = 0; |
||
213 | foreach ($nodes as $node) { |
||
214 | $importance += $node->getNodeImpurityDecrease($sampleCount); |
||
215 | } |
||
216 | |||
217 | $this->featureImportances[$columnName] = $importance; |
||
218 | } |
||
219 | |||
220 | // Normalize & sort the importances |
||
221 | $total = array_sum($this->featureImportances); |
||
222 | if ($total > 0) { |
||
223 | array_walk($this->featureImportances, function (&$importance) use ($total): void { |
||
224 | $importance /= $total; |
||
225 | }); |
||
226 | arsort($this->featureImportances); |
||
227 | } |
||
228 | |||
229 | return $this->featureImportances; |
||
230 | } |
||
231 | |||
232 | protected function getSplitLeaf(array $records, int $depth = 0): DecisionTreeLeaf |
||
291 | |||
292 | protected function getBestSplit(array $records): DecisionTreeLeaf |
||
335 | |||
336 | /** |
||
337 | * Returns available features/columns to the tree for the decision making |
||
338 | * process. <br> |
||
339 | * |
||
340 | * If a number is given with setNumFeatures() method, then a random selection |
||
341 | * of features up to this number is returned. <br> |
||
342 | * |
||
343 | * If some features are manually selected by use of setSelectedFeatures(), |
||
344 | * then only these features are returned <br> |
||
345 | * |
||
346 | * If any of above methods were not called beforehand, then all features |
||
347 | * are returned by default. |
||
348 | */ |
||
349 | protected function getSelectedFeatures(): array |
||
371 | |||
372 | protected function preprocess(array $samples): array |
||
397 | |||
398 | protected static function isCategoricalColumn(array $columnValues): bool |
||
421 | |||
422 | /** |
||
423 | * Used to set predefined features to consider while deciding which column to use for a split |
||
424 | */ |
||
425 | protected function setSelectedFeatures(array $selectedFeatures): void |
||
429 | |||
430 | /** |
||
431 | * Collects and returns an array of internal nodes that use the given |
||
432 | * column as a split criterion |
||
433 | */ |
||
434 | protected function getSplitNodesByColumn(int $column, DecisionTreeLeaf $node): array |
||
457 | |||
458 | /** |
||
459 | * @return mixed |
||
460 | */ |
||
461 | protected function predictSample(array $sample) |
||
478 | } |
||
479 |