Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
| 1 | <?php |
||
| 10 | class LogisticRegression extends Adaline |
||
| 11 | { |
||
| 12 | |||
| 13 | /** |
||
| 14 | * Batch training: Gradient descent algorithm (default) |
||
| 15 | */ |
||
| 16 | const BATCH_TRAINING = 1; |
||
| 17 | |||
| 18 | /** |
||
| 19 | * Online training: Stochastic gradient descent learning |
||
| 20 | */ |
||
| 21 | const ONLINE_TRAINING = 2; |
||
| 22 | |||
| 23 | /** |
||
| 24 | * Conjugate Batch: Conjugate Gradient algorithm |
||
| 25 | */ |
||
| 26 | const CONJUGATE_GRAD_TRAINING = 3; |
||
| 27 | |||
| 28 | /** |
||
| 29 | * Cost function to optimize: 'log' and 'sse' are supported <br> |
||
| 30 | * - 'log' : log likelihood <br> |
||
| 31 | * - 'sse' : sum of squared errors <br> |
||
| 32 | * |
||
| 33 | * @var string |
||
| 34 | */ |
||
| 35 | protected $costFunction = 'sse'; |
||
| 36 | |||
| 37 | /** |
||
| 38 | * Regularization term: only 'L2' is supported |
||
| 39 | * |
||
| 40 | * @var string |
||
| 41 | */ |
||
| 42 | protected $penalty = 'L2'; |
||
| 43 | |||
| 44 | /** |
||
| 45 | * Lambda (λ) parameter of regularization term. If λ is set to 0, then |
||
| 46 | * regularization term is cancelled. |
||
| 47 | * |
||
| 48 | * @var float |
||
| 49 | */ |
||
| 50 | protected $lambda = 0.5; |
||
| 51 | |||
| 52 | /** |
||
| 53 | * Initalize a Logistic Regression classifier with maximum number of iterations |
||
| 54 | * and learning rule to be applied <br> |
||
| 55 | * |
||
| 56 | * Maximum number of iterations can be an integer value greater than 0 <br> |
||
| 57 | * If normalizeInputs is set to true, then every input given to the algorithm will be standardized |
||
| 58 | * by use of standard deviation and mean calculation <br> |
||
| 59 | * |
||
| 60 | * Cost function can be 'log' for log-likelihood and 'sse' for sum of squared errors <br> |
||
| 61 | * |
||
| 62 | * Penalty (Regularization term) can be 'L2' or empty string to cancel penalty term |
||
| 63 | * |
||
| 64 | * @param int $maxIterations |
||
| 65 | * @param bool $normalizeInputs |
||
| 66 | * @param int $trainingType |
||
| 67 | * @param string $cost |
||
| 68 | * @param string $penalty |
||
| 69 | * |
||
| 70 | * @throws \Exception |
||
| 71 | */ |
||
| 72 | public function __construct(int $maxIterations = 500, bool $normalizeInputs = true, |
||
| 100 | |||
| 101 | /** |
||
| 102 | * Sets the learning rate if gradient descent algorithm is |
||
| 103 | * selected for training |
||
| 104 | * |
||
| 105 | * @param float $learningRate |
||
| 106 | */ |
||
| 107 | public function setLearningRate(float $learningRate) |
||
| 111 | |||
| 112 | /** |
||
| 113 | * Lambda (λ) parameter of regularization term. If 0 is given, |
||
| 114 | * then the regularization term is cancelled |
||
| 115 | * |
||
| 116 | * @param float $lambda |
||
| 117 | */ |
||
| 118 | public function setLambda(float $lambda) |
||
| 122 | |||
| 123 | /** |
||
| 124 | * Adapts the weights with respect to given samples and targets |
||
| 125 | * by use of selected solver |
||
| 126 | */ |
||
| 127 | protected function runTraining() |
||
| 142 | |||
| 143 | /** |
||
| 144 | * Executes Conjugate Gradient method to optimize the |
||
| 145 | * weights of the LogReg model |
||
| 146 | */ |
||
| 147 | protected function runConjugateGradient(\Closure $gradientFunc) |
||
| 155 | |||
| 156 | /** |
||
| 157 | * Returns the appropriate callback function for the selected cost function |
||
| 158 | * |
||
| 159 | * @return \Closure |
||
| 160 | */ |
||
| 161 | protected function getCostFunction() |
||
| 224 | |||
| 225 | /** |
||
| 226 | * Returns the output of the network, a float value between 0.0 and 1.0 |
||
| 227 | * |
||
| 228 | * @param array $sample |
||
| 229 | * |
||
| 230 | * @return float |
||
| 231 | */ |
||
| 232 | protected function output(array $sample) |
||
| 238 | |||
| 239 | /** |
||
| 240 | * Returns the class value (either -1 or 1) for the given input |
||
| 241 | * |
||
| 242 | * @param array $sample |
||
| 243 | * @return int |
||
| 244 | */ |
||
| 245 | protected function outputClass(array $sample) |
||
| 255 | |||
| 256 | /** |
||
| 257 | * Returns the probability of the sample of belonging to the given label. |
||
| 258 | * |
||
| 259 | * The probability is simply taken as the distance of the sample |
||
| 260 | * to the decision plane. |
||
| 261 | * |
||
| 262 | * @param array $sample |
||
| 263 | * @param mixed $label |
||
| 264 | */ |
||
| 265 | View Code Duplication | protected function predictProbability(array $sample, $label) |
|
| 276 | } |
||
| 277 |
This check looks for assignments to scalar types that may be of the wrong type.
To ensure the code behaves as expected, it may be a good idea to add an explicit type cast.