@@ -1,5 +1,5 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | -declare(strict_types=1); |
|
| 2 | +declare(strict_types = 1); |
|
| 3 | 3 | |
| 4 | 4 | namespace Phpml\Classification\Ensemble; |
| 5 | 5 | |
@@ -70,11 +70,11 @@ discard block |
||
| 70 | 70 | protected function initSingleClassifier($classifier, $index) |
| 71 | 71 | { |
| 72 | 72 | if (is_float($this->featureSubsetRatio)) { |
| 73 | - $featureCount = (int)($this->featureSubsetRatio * $this->featureCount); |
|
| 73 | + $featureCount = (int) ($this->featureSubsetRatio * $this->featureCount); |
|
| 74 | 74 | } elseif ($this->featureCount == 'sqrt') { |
| 75 | - $featureCount = (int)sqrt($this->featureCount) + 1; |
|
| 75 | + $featureCount = (int) sqrt($this->featureCount) + 1; |
|
| 76 | 76 | } else { |
| 77 | - $featureCount = (int)log($this->featureCount, 2) + 1; |
|
| 77 | + $featureCount = (int) log($this->featureCount, 2) + 1; |
|
| 78 | 78 | } |
| 79 | 79 | |
| 80 | 80 | if ($featureCount >= $this->featureCount) { |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification\Ensemble; |
| 6 | 6 | |
@@ -140,7 +140,7 @@ discard block |
||
| 140 | 140 | $targets = []; |
| 141 | 141 | srand($index); |
| 142 | 142 | $bootstrapSize = $this->subsetRatio * $this->numSamples; |
| 143 | - for ($i=0; $i < $bootstrapSize; $i++) { |
|
| 143 | + for ($i = 0; $i < $bootstrapSize; $i++) { |
|
| 144 | 144 | $rand = rand(0, $this->numSamples - 1); |
| 145 | 145 | $samples[] = $this->samples[$rand]; |
| 146 | 146 | $targets[] = $this->targets[$rand]; |
@@ -154,7 +154,7 @@ discard block |
||
| 154 | 154 | protected function initClassifiers() |
| 155 | 155 | { |
| 156 | 156 | $classifiers = []; |
| 157 | - for ($i=0; $i<$this->numClassifier; $i++) { |
|
| 157 | + for ($i = 0; $i < $this->numClassifier; $i++) { |
|
| 158 | 158 | $ref = new \ReflectionClass($this->classifier); |
| 159 | 159 | if ($this->classifierOptions) { |
| 160 | 160 | $obj = $ref->newInstanceArgs($this->classifierOptions); |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Preprocessing; |
| 6 | 6 | |
@@ -12,7 +12,7 @@ discard block |
||
| 12 | 12 | { |
| 13 | 13 | const NORM_L1 = 1; |
| 14 | 14 | const NORM_L2 = 2; |
| 15 | - const NORM_STD= 3; |
|
| 15 | + const NORM_STD = 3; |
|
| 16 | 16 | |
| 17 | 17 | /** |
| 18 | 18 | * @var int |
@@ -117,7 +117,7 @@ discard block |
||
| 117 | 117 | foreach ($sample as $feature) { |
| 118 | 118 | $norm2 += $feature * $feature; |
| 119 | 119 | } |
| 120 | - $norm2 = sqrt((float)$norm2); |
|
| 120 | + $norm2 = sqrt((float) $norm2); |
|
| 121 | 121 | |
| 122 | 122 | if (0 == $norm2) { |
| 123 | 123 | $sample = array_fill(0, count($sample), 1); |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification\Linear; |
| 6 | 6 | |
@@ -15,12 +15,12 @@ discard block |
||
| 15 | 15 | /** |
| 16 | 16 | * Batch training is the default Adaline training algorithm |
| 17 | 17 | */ |
| 18 | - const BATCH_TRAINING = 1; |
|
| 18 | + const BATCH_TRAINING = 1; |
|
| 19 | 19 | |
| 20 | 20 | /** |
| 21 | 21 | * Online training: Stochastic gradient descent learning |
| 22 | 22 | */ |
| 23 | - const ONLINE_TRAINING = 2; |
|
| 23 | + const ONLINE_TRAINING = 2; |
|
| 24 | 24 | |
| 25 | 25 | /** |
| 26 | 26 | * The function whose result will be used to calculate the network error |
@@ -52,7 +52,7 @@ discard block |
||
| 52 | 52 | public function __construct(float $learningRate = 0.001, int $maxIterations = 1000, |
| 53 | 53 | bool $normalizeInputs = true, int $trainingType = self::BATCH_TRAINING) |
| 54 | 54 | { |
| 55 | - if (! in_array($trainingType, [self::BATCH_TRAINING, self::ONLINE_TRAINING])) { |
|
| 55 | + if (!in_array($trainingType, [self::BATCH_TRAINING, self::ONLINE_TRAINING])) { |
|
| 56 | 56 | throw new \Exception("Adaline can only be trained with batch and online/stochastic gradient descent algorithm"); |
| 57 | 57 | } |
| 58 | 58 | |
@@ -104,7 +104,7 @@ discard block |
||
| 104 | 104 | protected function updateWeights(array $updates) |
| 105 | 105 | { |
| 106 | 106 | // Updates all weights at once |
| 107 | - for ($i=0; $i <= $this->featureCount; $i++) { |
|
| 107 | + for ($i = 0; $i <= $this->featureCount; $i++) { |
|
| 108 | 108 | if ($i == 0) { |
| 109 | 109 | $this->weights[0] += $this->learningRate * array_sum($updates); |
| 110 | 110 | } else { |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification\DecisionTree; |
| 6 | 6 | |
@@ -34,7 +34,7 @@ discard block |
||
| 34 | 34 | /** |
| 35 | 35 | * @var DecisionTreeLeaf |
| 36 | 36 | */ |
| 37 | - public $rightLeaf= null; |
|
| 37 | + public $rightLeaf = null; |
|
| 38 | 38 | |
| 39 | 39 | /** |
| 40 | 40 | * @var array |
@@ -79,7 +79,7 @@ discard block |
||
| 79 | 79 | |
| 80 | 80 | if ($this->isContinuous) { |
| 81 | 81 | $op = $this->operator; |
| 82 | - $value= $this->numericValue; |
|
| 82 | + $value = $this->numericValue; |
|
| 83 | 83 | $recordField = strval($recordField); |
| 84 | 84 | eval("\$result = $recordField $op $value;"); |
| 85 | 85 | return $result; |
@@ -100,16 +100,16 @@ discard block |
||
| 100 | 100 | return 0.0; |
| 101 | 101 | } |
| 102 | 102 | |
| 103 | - $nodeSampleCount = (float)count($this->records); |
|
| 103 | + $nodeSampleCount = (float) count($this->records); |
|
| 104 | 104 | $iT = $this->giniIndex; |
| 105 | 105 | |
| 106 | 106 | if ($this->leftLeaf) { |
| 107 | - $pL = count($this->leftLeaf->records)/$nodeSampleCount; |
|
| 107 | + $pL = count($this->leftLeaf->records) / $nodeSampleCount; |
|
| 108 | 108 | $iT -= $pL * $this->leftLeaf->giniIndex; |
| 109 | 109 | } |
| 110 | 110 | |
| 111 | 111 | if ($this->rightLeaf) { |
| 112 | - $pR = count($this->rightLeaf->records)/$nodeSampleCount; |
|
| 112 | + $pR = count($this->rightLeaf->records) / $nodeSampleCount; |
|
| 113 | 113 | $iT -= $pR * $this->rightLeaf->giniIndex; |
| 114 | 114 | } |
| 115 | 115 | |
@@ -133,25 +133,25 @@ discard block |
||
| 133 | 133 | } else { |
| 134 | 134 | $col = "col_$this->columnIndex"; |
| 135 | 135 | } |
| 136 | - if (! preg_match("/^[<>=]{1,2}/", $value)) { |
|
| 136 | + if (!preg_match("/^[<>=]{1,2}/", $value)) { |
|
| 137 | 137 | $value = "=$value"; |
| 138 | 138 | } |
| 139 | - $value = "<b>$col $value</b><br>Gini: ". number_format($this->giniIndex, 2); |
|
| 139 | + $value = "<b>$col $value</b><br>Gini: ".number_format($this->giniIndex, 2); |
|
| 140 | 140 | } |
| 141 | 141 | $str = "<table ><tr><td colspan=3 align=center style='border:1px solid;'> |
| 142 | 142 | $value</td></tr>"; |
| 143 | 143 | if ($this->leftLeaf || $this->rightLeaf) { |
| 144 | - $str .='<tr>'; |
|
| 144 | + $str .= '<tr>'; |
|
| 145 | 145 | if ($this->leftLeaf) { |
| 146 | - $str .="<td valign=top><b>| Yes</b><br>" . $this->leftLeaf->getHTML($columnNames) . "</td>"; |
|
| 146 | + $str .= "<td valign=top><b>| Yes</b><br>".$this->leftLeaf->getHTML($columnNames)."</td>"; |
|
| 147 | 147 | } else { |
| 148 | - $str .='<td></td>'; |
|
| 148 | + $str .= '<td></td>'; |
|
| 149 | 149 | } |
| 150 | - $str .='<td> </td>'; |
|
| 150 | + $str .= '<td> </td>'; |
|
| 151 | 151 | if ($this->rightLeaf) { |
| 152 | - $str .="<td valign=top align=right><b>No |</b><br>" . $this->rightLeaf->getHTML($columnNames) . "</td>"; |
|
| 152 | + $str .= "<td valign=top align=right><b>No |</b><br>".$this->rightLeaf->getHTML($columnNames)."</td>"; |
|
| 153 | 153 | } else { |
| 154 | - $str .='<td></td>'; |
|
| 154 | + $str .= '<td></td>'; |
|
| 155 | 155 | } |
| 156 | 156 | $str .= '</tr>'; |
| 157 | 157 | } |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification; |
| 6 | 6 | |
@@ -114,7 +114,7 @@ discard block |
||
| 114 | 114 | { |
| 115 | 115 | $types = []; |
| 116 | 116 | $featureCount = count($samples[0]); |
| 117 | - for ($i=0; $i < $featureCount; $i++) { |
|
| 117 | + for ($i = 0; $i < $featureCount; $i++) { |
|
| 118 | 118 | $values = array_column($samples, $i); |
| 119 | 119 | $isCategorical = self::isCategoricalColumn($values); |
| 120 | 120 | $types[] = $isCategorical ? self::NOMINAL : self::CONTINUOS; |
@@ -138,7 +138,7 @@ discard block |
||
| 138 | 138 | // otherwise group the records so that we can classify the leaf |
| 139 | 139 | // in case maximum depth is reached |
| 140 | 140 | $leftRecords = []; |
| 141 | - $rightRecords= []; |
|
| 141 | + $rightRecords = []; |
|
| 142 | 142 | $remainingTargets = []; |
| 143 | 143 | $prevRecord = null; |
| 144 | 144 | $allSame = true; |
@@ -156,12 +156,12 @@ discard block |
||
| 156 | 156 | if ($split->evaluate($record)) { |
| 157 | 157 | $leftRecords[] = $recordNo; |
| 158 | 158 | } else { |
| 159 | - $rightRecords[]= $recordNo; |
|
| 159 | + $rightRecords[] = $recordNo; |
|
| 160 | 160 | } |
| 161 | 161 | |
| 162 | 162 | // Group remaining targets |
| 163 | 163 | $target = $this->targets[$recordNo]; |
| 164 | - if (! array_key_exists($target, $remainingTargets)) { |
|
| 164 | + if (!array_key_exists($target, $remainingTargets)) { |
|
| 165 | 165 | $remainingTargets[$target] = 1; |
| 166 | 166 | } else { |
| 167 | 167 | $remainingTargets[$target]++; |
@@ -177,7 +177,7 @@ discard block |
||
| 177 | 177 | $split->leftLeaf = $this->getSplitLeaf($leftRecords, $depth + 1); |
| 178 | 178 | } |
| 179 | 179 | if ($rightRecords) { |
| 180 | - $split->rightLeaf= $this->getSplitLeaf($rightRecords, $depth + 1); |
|
| 180 | + $split->rightLeaf = $this->getSplitLeaf($rightRecords, $depth + 1); |
|
| 181 | 181 | } |
| 182 | 182 | } |
| 183 | 183 | return $split; |
@@ -247,7 +247,7 @@ discard block |
||
| 247 | 247 | protected function getSelectedFeatures() |
| 248 | 248 | { |
| 249 | 249 | $allFeatures = range(0, $this->featureCount - 1); |
| 250 | - if ($this->numUsableFeatures == 0 && ! $this->selectedFeatures) { |
|
| 250 | + if ($this->numUsableFeatures == 0 && !$this->selectedFeatures) { |
|
| 251 | 251 | return $allFeatures; |
| 252 | 252 | } |
| 253 | 253 | |
@@ -283,7 +283,7 @@ discard block |
||
| 283 | 283 | $countMatrix[$label][$rowIndex]++; |
| 284 | 284 | } |
| 285 | 285 | $giniParts = [0, 0]; |
| 286 | - for ($i=0; $i<=1; $i++) { |
|
| 286 | + for ($i = 0; $i <= 1; $i++) { |
|
| 287 | 287 | $part = 0; |
| 288 | 288 | $sum = array_sum(array_column($countMatrix, $i)); |
| 289 | 289 | if ($sum > 0) { |
@@ -305,7 +305,7 @@ discard block |
||
| 305 | 305 | // Detect and convert continuous data column values into |
| 306 | 306 | // discrete values by using the median as a threshold value |
| 307 | 307 | $columns = []; |
| 308 | - for ($i=0; $i<$this->featureCount; $i++) { |
|
| 308 | + for ($i = 0; $i < $this->featureCount; $i++) { |
|
| 309 | 309 | $values = array_column($samples, $i); |
| 310 | 310 | if ($this->columnTypes[$i] == self::CONTINUOS) { |
| 311 | 311 | $median = Mean::median($values); |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification\Linear; |
| 6 | 6 | |
@@ -169,7 +169,7 @@ discard block |
||
| 169 | 169 | // Update bias |
| 170 | 170 | $this->weights[0] += $update * $this->learningRate; // Bias |
| 171 | 171 | // Update other weights |
| 172 | - for ($i=1; $i <= $this->featureCount; $i++) { |
|
| 172 | + for ($i = 1; $i <= $this->featureCount; $i++) { |
|
| 173 | 173 | $this->weights[$i] += $update * $sample[$i - 1] * $this->learningRate; |
| 174 | 174 | } |
| 175 | 175 | } |
@@ -202,7 +202,7 @@ discard block |
||
| 202 | 202 | { |
| 203 | 203 | // Check for early stop: No change larger than 1e-5 |
| 204 | 204 | $diff = array_map( |
| 205 | - function ($w1, $w2) { |
|
| 205 | + function($w1, $w2) { |
|
| 206 | 206 | return abs($w1 - $w2) > 1e-5 ? 1 : 0; |
| 207 | 207 | }, |
| 208 | 208 | $oldWeights, $this->weights); |
@@ -259,6 +259,6 @@ discard block |
||
| 259 | 259 | |
| 260 | 260 | $predictedClass = $this->outputClass($sample); |
| 261 | 261 | |
| 262 | - return $this->labels[ $predictedClass ]; |
|
| 262 | + return $this->labels[$predictedClass]; |
|
| 263 | 263 | } |
| 264 | 264 | } |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification\Ensemble; |
| 6 | 6 | |
@@ -173,15 +173,15 @@ discard block |
||
| 173 | 173 | { |
| 174 | 174 | $weights = $this->weights; |
| 175 | 175 | $std = StandardDeviation::population($weights); |
| 176 | - $mean= Mean::arithmetic($weights); |
|
| 176 | + $mean = Mean::arithmetic($weights); |
|
| 177 | 177 | $min = min($weights); |
| 178 | - $minZ= (int)round(($min - $mean) / $std); |
|
| 178 | + $minZ = (int) round(($min - $mean) / $std); |
|
| 179 | 179 | |
| 180 | 180 | $samples = []; |
| 181 | 181 | $targets = []; |
| 182 | 182 | foreach ($weights as $index => $weight) { |
| 183 | - $z = (int)round(($weight - $mean) / $std) - $minZ + 1; |
|
| 184 | - for ($i=0; $i < $z; $i++) { |
|
| 183 | + $z = (int) round(($weight - $mean) / $std) - $minZ + 1; |
|
| 184 | + for ($i = 0; $i < $z; $i++) { |
|
| 185 | 185 | if (rand(0, 1) == 0) { |
| 186 | 186 | continue; |
| 187 | 187 | } |
@@ -260,6 +260,6 @@ discard block |
||
| 260 | 260 | $sum += $h * $alpha; |
| 261 | 261 | } |
| 262 | 262 | |
| 263 | - return $this->labels[ $sum > 0 ? 1 : -1]; |
|
| 263 | + return $this->labels[$sum > 0 ? 1 : -1]; |
|
| 264 | 264 | } |
| 265 | 265 | } |
@@ -1,6 +1,6 @@ |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification; |
| 6 | 6 | |