|
1
|
|
|
<?php |
|
2
|
|
|
|
|
3
|
|
|
declare(strict_types=1); |
|
4
|
|
|
|
|
5
|
|
|
namespace Phpml\Helper; |
|
6
|
|
|
|
|
7
|
|
|
trait OneVsRest |
|
8
|
|
|
{ |
|
9
|
|
|
/** |
|
10
|
|
|
* @var array |
|
11
|
|
|
*/ |
|
12
|
|
|
protected $samples = []; |
|
13
|
|
|
|
|
14
|
|
|
/** |
|
15
|
|
|
* @var array |
|
16
|
|
|
*/ |
|
17
|
|
|
protected $targets = []; |
|
18
|
|
|
|
|
19
|
|
|
/** |
|
20
|
|
|
* @var array |
|
21
|
|
|
*/ |
|
22
|
|
|
protected $classifiers; |
|
23
|
|
|
|
|
24
|
|
|
/** |
|
25
|
|
|
* @var array |
|
26
|
|
|
*/ |
|
27
|
|
|
protected $labels; |
|
28
|
|
|
|
|
29
|
|
|
/** |
|
30
|
|
|
* Train a binary classifier in the OvR style |
|
31
|
|
|
* |
|
32
|
|
|
* @param array $samples |
|
33
|
|
|
* @param array $targets |
|
34
|
|
|
*/ |
|
35
|
|
|
public function train(array $samples, array $targets) |
|
36
|
|
|
{ |
|
37
|
|
|
// Clone the current classifier, so that |
|
38
|
|
|
// we don't mess up its variables while training |
|
39
|
|
|
// multiple instances of this classifier |
|
40
|
|
|
$classifier = clone $this; |
|
41
|
|
|
$this->classifiers = []; |
|
42
|
|
|
|
|
43
|
|
|
// If there are only two targets, then there is no need to perform OvR |
|
44
|
|
|
$this->labels = array_keys(array_count_values($targets)); |
|
45
|
|
|
if (count($this->labels) == 2) { |
|
46
|
|
|
$classifier->trainBinary($samples, $targets); |
|
47
|
|
|
$this->classifiers[] = $classifier; |
|
48
|
|
|
} else { |
|
49
|
|
|
// Train a separate classifier for each label and memorize them |
|
50
|
|
|
$this->samples = $samples; |
|
51
|
|
|
$this->targets = $targets; |
|
52
|
|
|
foreach ($this->labels as $label) { |
|
53
|
|
|
$predictor = clone $classifier; |
|
54
|
|
|
$targets = $this->binarizeTargets($label); |
|
55
|
|
|
$predictor->trainBinary($samples, $targets); |
|
56
|
|
|
$this->classifiers[$label] = $predictor; |
|
57
|
|
|
} |
|
58
|
|
|
} |
|
59
|
|
|
} |
|
60
|
|
|
|
|
61
|
|
|
/** |
|
62
|
|
|
* Groups all targets into two groups: Targets equal to |
|
63
|
|
|
* the given label and the others |
|
64
|
|
|
* |
|
65
|
|
|
* @param mixed $label |
|
66
|
|
|
*/ |
|
67
|
|
|
private function binarizeTargets($label) |
|
68
|
|
|
{ |
|
69
|
|
|
$targets = []; |
|
70
|
|
|
|
|
71
|
|
|
foreach ($this->targets as $target) { |
|
72
|
|
|
$targets[] = $target == $label ? $label : "not_$label"; |
|
73
|
|
|
} |
|
74
|
|
|
|
|
75
|
|
|
return $targets; |
|
76
|
|
|
} |
|
77
|
|
|
|
|
78
|
|
|
|
|
79
|
|
|
/** |
|
80
|
|
|
* @param array $sample |
|
81
|
|
|
* |
|
82
|
|
|
* @return mixed |
|
83
|
|
|
*/ |
|
84
|
|
|
protected function predictSample(array $sample) |
|
85
|
|
|
{ |
|
86
|
|
|
if (count($this->labels) == 2) { |
|
87
|
|
|
return $this->classifiers[0]->predictSampleBinary($sample); |
|
88
|
|
|
} |
|
89
|
|
|
|
|
90
|
|
|
$probs = []; |
|
91
|
|
|
|
|
92
|
|
|
foreach ($this->classifiers as $label => $predictor) { |
|
93
|
|
|
$probs[$label] = $predictor->predictProbability($sample, $label); |
|
94
|
|
|
} |
|
95
|
|
|
|
|
96
|
|
|
arsort($probs, SORT_NUMERIC); |
|
97
|
|
|
return key($probs); |
|
98
|
|
|
} |
|
99
|
|
|
|
|
100
|
|
|
/** |
|
101
|
|
|
* Each classifier should implement this method instead of train(samples, targets) |
|
102
|
|
|
* |
|
103
|
|
|
* @param array $samples |
|
104
|
|
|
* @param array $targets |
|
105
|
|
|
*/ |
|
106
|
|
|
abstract protected function trainBinary(array $samples, array $targets); |
|
107
|
|
|
|
|
108
|
|
|
/** |
|
109
|
|
|
* Each classifier that make use of OvR approach should be able to |
|
110
|
|
|
* return a probability for a sample to belong to the given label. |
|
111
|
|
|
* |
|
112
|
|
|
* @param array $sample |
|
113
|
|
|
* |
|
114
|
|
|
* @return mixed |
|
115
|
|
|
*/ |
|
116
|
|
|
abstract protected function predictProbability(array $sample, string $label); |
|
117
|
|
|
|
|
118
|
|
|
/** |
|
119
|
|
|
* Each classifier should implement this method instead of predictSample() |
|
120
|
|
|
* |
|
121
|
|
|
* @param array $sample |
|
122
|
|
|
* |
|
123
|
|
|
* @return mixed |
|
124
|
|
|
*/ |
|
125
|
|
|
abstract protected function predictSampleBinary(array $sample); |
|
126
|
|
|
} |
|
127
|
|
|
|