|
1
|
|
|
<?php |
|
2
|
|
|
|
|
3
|
|
|
declare(strict_types=1); |
|
4
|
|
|
|
|
5
|
|
|
namespace Phpml\Classification\Linear; |
|
6
|
|
|
|
|
7
|
|
|
use Phpml\Helper\Predictable; |
|
8
|
|
|
use Phpml\Helper\Trainable; |
|
9
|
|
|
use Phpml\Classification\Classifier; |
|
10
|
|
|
use Phpml\Classification\DecisionTree; |
|
11
|
|
|
use Phpml\Classification\DecisionTree\DecisionTreeLeaf; |
|
12
|
|
|
|
|
13
|
|
|
class DecisionStump extends DecisionTree |
|
14
|
|
|
{ |
|
15
|
|
|
use Trainable, Predictable; |
|
16
|
|
|
|
|
17
|
|
|
/** |
|
18
|
|
|
* @var int |
|
19
|
|
|
*/ |
|
20
|
|
|
protected $columnIndex; |
|
21
|
|
|
|
|
22
|
|
|
|
|
23
|
|
|
/** |
|
24
|
|
|
* Sample weights : If used the optimization on the decision value |
|
25
|
|
|
* will take these weights into account. If not given, all samples |
|
26
|
|
|
* will be weighed with the same value of 1 |
|
27
|
|
|
* |
|
28
|
|
|
* @var array |
|
29
|
|
|
*/ |
|
30
|
|
|
protected $weights = null; |
|
31
|
|
|
|
|
32
|
|
|
/** |
|
33
|
|
|
* Lowest error rate obtained while training/optimizing the model |
|
34
|
|
|
* |
|
35
|
|
|
* @var float |
|
36
|
|
|
*/ |
|
37
|
|
|
protected $trainingErrorRate; |
|
38
|
|
|
|
|
39
|
|
|
/** |
|
40
|
|
|
* A DecisionStump classifier is a one-level deep DecisionTree. It is generally |
|
41
|
|
|
* used with ensemble algorithms as in the weak classifier role. <br> |
|
42
|
|
|
* |
|
43
|
|
|
* If columnIndex is given, then the stump tries to produce a decision node |
|
44
|
|
|
* on this column, otherwise in cases given the value of -1, the stump itself |
|
45
|
|
|
* decides which column to take for the decision (Default DecisionTree behaviour) |
|
46
|
|
|
* |
|
47
|
|
|
* @param int $columnIndex |
|
48
|
|
|
*/ |
|
49
|
|
|
public function __construct(int $columnIndex = -1) |
|
50
|
|
|
{ |
|
51
|
|
|
$this->columnIndex = $columnIndex; |
|
52
|
|
|
|
|
53
|
|
|
parent::__construct(1); |
|
54
|
|
|
} |
|
55
|
|
|
|
|
56
|
|
|
/** |
|
57
|
|
|
* @param array $samples |
|
58
|
|
|
* @param array $targets |
|
59
|
|
|
*/ |
|
60
|
|
|
public function train(array $samples, array $targets) |
|
61
|
|
|
{ |
|
62
|
|
|
if ($this->columnIndex > count($samples[0]) - 1) { |
|
63
|
|
|
$this->columnIndex = -1; |
|
64
|
|
|
} |
|
65
|
|
|
|
|
66
|
|
|
if ($this->columnIndex >= 0) { |
|
67
|
|
|
$this->setSelectedFeatures([$this->columnIndex]); |
|
68
|
|
|
} |
|
69
|
|
|
|
|
70
|
|
|
if ($this->weights) { |
|
|
|
|
|
|
71
|
|
|
$numWeights = count($this->weights); |
|
72
|
|
|
if ($numWeights != count($samples)) { |
|
73
|
|
|
throw new \Exception("Number of sample weights does not match with number of samples"); |
|
74
|
|
|
} |
|
75
|
|
|
} else { |
|
76
|
|
|
$this->weights = array_fill(0, count($samples), 1); |
|
77
|
|
|
} |
|
78
|
|
|
|
|
79
|
|
|
parent::train($samples, $targets); |
|
80
|
|
|
|
|
81
|
|
|
$this->columnIndex = $this->tree->columnIndex; |
|
82
|
|
|
|
|
83
|
|
|
// For numerical values, try to optimize the value by finding a different threshold value |
|
84
|
|
|
if ($this->columnTypes[$this->columnIndex] == self::CONTINUOS) { |
|
85
|
|
|
$this->optimizeDecision($samples, $targets); |
|
86
|
|
|
} |
|
87
|
|
|
} |
|
88
|
|
|
|
|
89
|
|
|
/** |
|
90
|
|
|
* Used to set sample weights. |
|
91
|
|
|
* |
|
92
|
|
|
* @param array $weights |
|
93
|
|
|
*/ |
|
94
|
|
|
public function setSampleWeights(array $weights) |
|
95
|
|
|
{ |
|
96
|
|
|
$this->weights = $weights; |
|
97
|
|
|
} |
|
98
|
|
|
|
|
99
|
|
|
/** |
|
100
|
|
|
* Returns the training error rate, the proportion of wrong predictions |
|
101
|
|
|
* over the total number of samples |
|
102
|
|
|
* |
|
103
|
|
|
* @return float |
|
104
|
|
|
*/ |
|
105
|
|
|
public function getTrainingErrorRate() |
|
106
|
|
|
{ |
|
107
|
|
|
return $this->trainingErrorRate; |
|
108
|
|
|
} |
|
109
|
|
|
|
|
110
|
|
|
/** |
|
111
|
|
|
* Tries to optimize the threshold by probing a range of different values |
|
112
|
|
|
* between the minimum and maximum values in the selected column |
|
113
|
|
|
* |
|
114
|
|
|
* @param array $samples |
|
115
|
|
|
* @param array $targets |
|
116
|
|
|
*/ |
|
117
|
|
|
protected function optimizeDecision(array $samples, array $targets) |
|
118
|
|
|
{ |
|
119
|
|
|
$values = array_column($samples, $this->columnIndex); |
|
120
|
|
|
$minValue = min($values); |
|
121
|
|
|
$maxValue = max($values); |
|
122
|
|
|
$stepSize = ($maxValue - $minValue) / 100.0; |
|
123
|
|
|
|
|
124
|
|
|
$leftLabel = $this->tree->leftLeaf->classValue; |
|
125
|
|
|
$rightLabel= $this->tree->rightLeaf->classValue; |
|
126
|
|
|
|
|
127
|
|
|
$bestOperator = $this->tree->operator; |
|
128
|
|
|
$bestThreshold = $this->tree->numericValue; |
|
129
|
|
|
$bestErrorRate = $this->calculateErrorRate( |
|
130
|
|
|
$bestThreshold, $bestOperator, $values, $targets, $leftLabel, $rightLabel); |
|
131
|
|
|
|
|
132
|
|
|
foreach (['<=', '>'] as $operator) { |
|
133
|
|
|
for ($step = $minValue; $step <= $maxValue; $step+= $stepSize) { |
|
134
|
|
|
$threshold = (float)$step; |
|
135
|
|
|
$errorRate = $this->calculateErrorRate( |
|
136
|
|
|
$threshold, $operator, $values, $targets, $leftLabel, $rightLabel); |
|
137
|
|
|
|
|
138
|
|
|
if ($errorRate < $bestErrorRate) { |
|
139
|
|
|
$bestErrorRate = $errorRate; |
|
140
|
|
|
$bestThreshold = $threshold; |
|
141
|
|
|
$bestOperator = $operator; |
|
142
|
|
|
} |
|
143
|
|
|
}// for |
|
144
|
|
|
} |
|
145
|
|
|
|
|
146
|
|
|
// Update the tree node value |
|
147
|
|
|
$this->tree->numericValue = $bestThreshold; |
|
148
|
|
|
$this->tree->operator = $bestOperator; |
|
149
|
|
|
$this->tree->value = "$bestOperator $bestThreshold"; |
|
150
|
|
|
$this->trainingErrorRate = $bestErrorRate; |
|
151
|
|
|
} |
|
152
|
|
|
|
|
153
|
|
|
/** |
|
154
|
|
|
* Calculates the ratio of wrong predictions based on the new threshold |
|
155
|
|
|
* value given as the parameter |
|
156
|
|
|
* |
|
157
|
|
|
* @param float $threshold |
|
158
|
|
|
* @param string $operator |
|
159
|
|
|
* @param array $values |
|
160
|
|
|
* @param array $targets |
|
161
|
|
|
* @param mixed $leftLabel |
|
162
|
|
|
* @param mixed $rightLabel |
|
163
|
|
|
*/ |
|
164
|
|
|
protected function calculateErrorRate(float $threshold, string $operator, array $values, array $targets, $leftLabel, $rightLabel) |
|
|
|
|
|
|
165
|
|
|
{ |
|
166
|
|
|
$total = (float) array_sum($this->weights); |
|
167
|
|
|
$wrong = 0; |
|
168
|
|
|
|
|
169
|
|
|
foreach ($values as $index => $value) { |
|
170
|
|
|
eval("\$predicted = \$value $operator \$threshold ? \$leftLabel : \$rightLabel;"); |
|
|
|
|
|
|
171
|
|
|
|
|
172
|
|
|
if ($predicted != $targets[$index]) { |
|
|
|
|
|
|
173
|
|
|
$wrong += $this->weights[$index]; |
|
174
|
|
|
} |
|
175
|
|
|
} |
|
176
|
|
|
|
|
177
|
|
|
return $wrong / $total; |
|
178
|
|
|
} |
|
179
|
|
|
} |
|
180
|
|
|
|
This check marks implicit conversions of arrays to boolean values in a comparison. While in PHP an empty array is considered to be equal (but not identical) to false, this is not always apparent.
Consider making the comparison explicit by using
empty(..)or! empty(...)instead.