|
1
|
|
|
<?php |
|
2
|
|
|
|
|
3
|
|
|
declare(strict_types=1); |
|
4
|
|
|
|
|
5
|
|
|
namespace Phpml\Classification\Ensemble; |
|
6
|
|
|
|
|
7
|
|
|
use Phpml\Classification\Classifier; |
|
8
|
|
|
use Phpml\Classification\DecisionTree; |
|
9
|
|
|
use Phpml\Exception\InvalidArgumentException; |
|
10
|
|
|
|
|
11
|
|
|
class RandomForest extends Bagging |
|
12
|
|
|
{ |
|
13
|
|
|
/** |
|
14
|
|
|
* @var float|string |
|
15
|
|
|
*/ |
|
16
|
|
|
protected $featureSubsetRatio = 'log'; |
|
17
|
|
|
|
|
18
|
|
|
/** |
|
19
|
|
|
* @var array|null |
|
20
|
|
|
*/ |
|
21
|
|
|
protected $columnNames; |
|
22
|
|
|
|
|
23
|
|
|
/** |
|
24
|
|
|
* Initializes RandomForest with the given number of trees. More trees |
|
25
|
|
|
* may increase the prediction performance while it will also substantially |
|
26
|
|
|
* increase the processing time and the required memory |
|
27
|
|
|
*/ |
|
28
|
|
|
public function __construct(int $numClassifier = 50) |
|
29
|
|
|
{ |
|
30
|
|
|
parent::__construct($numClassifier); |
|
31
|
|
|
|
|
32
|
|
|
$this->setSubsetRatio(1.0); |
|
33
|
|
|
} |
|
34
|
|
|
|
|
35
|
|
|
/** |
|
36
|
|
|
* This method is used to determine how many of the original columns (features) |
|
37
|
|
|
* will be used to construct subsets to train base classifiers.<br> |
|
38
|
|
|
* |
|
39
|
|
|
* Allowed values: 'sqrt', 'log' or any float number between 0.1 and 1.0 <br> |
|
40
|
|
|
* |
|
41
|
|
|
* Default value for the ratio is 'log' which results in log(numFeatures, 2) + 1 |
|
42
|
|
|
* features to be taken into consideration while selecting subspace of features |
|
43
|
|
|
* |
|
44
|
|
|
* @param mixed $ratio |
|
45
|
|
|
*/ |
|
46
|
|
|
public function setFeatureSubsetRatio($ratio): self |
|
47
|
|
|
{ |
|
48
|
|
|
if (!is_string($ratio) && !is_float($ratio)) { |
|
49
|
|
|
throw new InvalidArgumentException('Feature subset ratio must be a string or a float'); |
|
50
|
|
|
} |
|
51
|
|
|
|
|
52
|
|
|
if (is_float($ratio) && ($ratio < 0.1 || $ratio > 1.0)) { |
|
53
|
|
|
throw new InvalidArgumentException('When a float is given, feature subset ratio should be between 0.1 and 1.0'); |
|
54
|
|
|
} |
|
55
|
|
|
|
|
56
|
|
|
if (is_string($ratio) && $ratio !== 'sqrt' && $ratio !== 'log') { |
|
57
|
|
|
throw new InvalidArgumentException("When a string is given, feature subset ratio can only be 'sqrt' or 'log'"); |
|
58
|
|
|
} |
|
59
|
|
|
|
|
60
|
|
|
$this->featureSubsetRatio = $ratio; |
|
61
|
|
|
|
|
62
|
|
|
return $this; |
|
63
|
|
|
} |
|
64
|
|
|
|
|
65
|
|
|
/** |
|
66
|
|
|
* RandomForest algorithm is usable *only* with DecisionTree |
|
67
|
|
|
* |
|
68
|
|
|
* @return $this |
|
69
|
|
|
*/ |
|
70
|
|
|
public function setClassifer(string $classifier, array $classifierOptions = []) |
|
71
|
|
|
{ |
|
72
|
|
|
if ($classifier !== DecisionTree::class) { |
|
73
|
|
|
throw new InvalidArgumentException('RandomForest can only use DecisionTree as base classifier'); |
|
74
|
|
|
} |
|
75
|
|
|
|
|
76
|
|
|
parent::setClassifer($classifier, $classifierOptions); |
|
77
|
|
|
|
|
78
|
|
|
return $this; |
|
79
|
|
|
} |
|
80
|
|
|
|
|
81
|
|
|
/** |
|
82
|
|
|
* This will return an array including an importance value for |
|
83
|
|
|
* each column in the given dataset. Importance values for a column |
|
84
|
|
|
* is the average importance of that column in all trees in the forest |
|
85
|
|
|
*/ |
|
86
|
|
|
public function getFeatureImportances(): array |
|
87
|
|
|
{ |
|
88
|
|
|
// Traverse each tree and sum importance of the columns |
|
89
|
|
|
$sum = []; |
|
90
|
|
|
foreach ($this->classifiers as $tree) { |
|
91
|
|
|
/** @var DecisionTree $tree */ |
|
92
|
|
|
$importances = $tree->getFeatureImportances(); |
|
93
|
|
|
|
|
94
|
|
|
foreach ($importances as $column => $importance) { |
|
95
|
|
|
if (array_key_exists($column, $sum)) { |
|
96
|
|
|
$sum[$column] += $importance; |
|
97
|
|
|
} else { |
|
98
|
|
|
$sum[$column] = $importance; |
|
99
|
|
|
} |
|
100
|
|
|
} |
|
101
|
|
|
} |
|
102
|
|
|
|
|
103
|
|
|
// Normalize & sort the importance values |
|
104
|
|
|
$total = array_sum($sum); |
|
105
|
|
|
array_walk($sum, function (&$importance) use ($total): void { |
|
106
|
|
|
$importance /= $total; |
|
107
|
|
|
}); |
|
108
|
|
|
arsort($sum); |
|
109
|
|
|
|
|
110
|
|
|
return $sum; |
|
111
|
|
|
} |
|
112
|
|
|
|
|
113
|
|
|
/** |
|
114
|
|
|
* A string array to represent the columns is given. They are useful |
|
115
|
|
|
* when trying to print some information about the trees such as feature importances |
|
116
|
|
|
* |
|
117
|
|
|
* @return $this |
|
118
|
|
|
*/ |
|
119
|
|
|
public function setColumnNames(array $names) |
|
120
|
|
|
{ |
|
121
|
|
|
$this->columnNames = $names; |
|
122
|
|
|
|
|
123
|
|
|
return $this; |
|
124
|
|
|
} |
|
125
|
|
|
|
|
126
|
|
|
/** |
|
127
|
|
|
* @return DecisionTree |
|
128
|
|
|
*/ |
|
129
|
|
|
protected function initSingleClassifier(Classifier $classifier): Classifier |
|
130
|
|
|
{ |
|
131
|
|
|
if (!$classifier instanceof DecisionTree) { |
|
132
|
|
|
throw new InvalidArgumentException( |
|
133
|
|
|
sprintf('Classifier %s expected, got %s', DecisionTree::class, get_class($classifier)) |
|
134
|
|
|
); |
|
135
|
|
|
} |
|
136
|
|
|
|
|
137
|
|
|
if (is_float($this->featureSubsetRatio)) { |
|
138
|
|
|
$featureCount = (int) ($this->featureSubsetRatio * $this->featureCount); |
|
139
|
|
|
} elseif ($this->featureSubsetRatio === 'sqrt') { |
|
140
|
|
|
$featureCount = (int) ($this->featureCount ** .5) + 1; |
|
141
|
|
|
} else { |
|
142
|
|
|
$featureCount = (int) log($this->featureCount, 2) + 1; |
|
143
|
|
|
} |
|
144
|
|
|
|
|
145
|
|
|
if ($featureCount >= $this->featureCount) { |
|
146
|
|
|
$featureCount = $this->featureCount; |
|
147
|
|
|
} |
|
148
|
|
|
|
|
149
|
|
|
if ($this->columnNames === null) { |
|
150
|
|
|
$this->columnNames = range(0, $this->featureCount - 1); |
|
151
|
|
|
} |
|
152
|
|
|
|
|
153
|
|
|
return $classifier |
|
154
|
|
|
->setColumnNames($this->columnNames) |
|
155
|
|
|
->setNumFeatures($featureCount); |
|
156
|
|
|
} |
|
157
|
|
|
} |
|
158
|
|
|
|