1 | <?php |
||
14 | class DecisionStump extends WeightedClassifier |
||
15 | { |
||
16 | use Predictable, OneVsRest; |
||
17 | |||
18 | public const AUTO_SELECT = -1; |
||
19 | |||
20 | /** |
||
21 | * @var int |
||
22 | */ |
||
23 | protected $givenColumnIndex; |
||
24 | |||
25 | /** |
||
26 | * @var array |
||
27 | */ |
||
28 | protected $binaryLabels = []; |
||
29 | |||
30 | /** |
||
31 | * Lowest error rate obtained while training/optimizing the model |
||
32 | * |
||
33 | * @var float |
||
34 | */ |
||
35 | protected $trainingErrorRate; |
||
36 | |||
37 | /** |
||
38 | * @var int |
||
39 | */ |
||
40 | protected $column; |
||
41 | |||
42 | /** |
||
43 | * @var mixed |
||
44 | */ |
||
45 | protected $value; |
||
46 | |||
47 | /** |
||
48 | * @var string |
||
49 | */ |
||
50 | protected $operator; |
||
51 | |||
52 | /** |
||
53 | * @var array |
||
54 | */ |
||
55 | protected $columnTypes = []; |
||
56 | |||
57 | /** |
||
58 | * @var int |
||
59 | */ |
||
60 | protected $featureCount; |
||
61 | |||
62 | /** |
||
63 | * @var float |
||
64 | */ |
||
65 | protected $numSplitCount = 100.0; |
||
66 | |||
67 | /** |
||
68 | * Distribution of samples in the leaves |
||
69 | * |
||
70 | * @var array |
||
71 | */ |
||
72 | protected $prob = []; |
||
73 | |||
74 | /** |
||
75 | * A DecisionStump classifier is a one-level deep DecisionTree. It is generally |
||
76 | * used with ensemble algorithms as in the weak classifier role. <br> |
||
77 | * |
||
78 | * If columnIndex is given, then the stump tries to produce a decision node |
||
79 | * on this column, otherwise in cases given the value of -1, the stump itself |
||
80 | * decides which column to take for the decision (Default DecisionTree behaviour) |
||
81 | */ |
||
82 | public function __construct(int $columnIndex = self::AUTO_SELECT) |
||
86 | |||
87 | public function __toString(): string |
||
93 | |||
94 | /** |
||
95 | * While finding best split point for a numerical valued column, |
||
96 | * DecisionStump looks for equally distanced values between minimum and maximum |
||
97 | * values in the column. Given <i>$count</i> value determines how many split |
||
98 | * points to be probed. The more split counts, the better performance but |
||
99 | * worse processing time (Default value is 10.0) |
||
100 | */ |
||
101 | public function setNumericalSplitCount(float $count): void |
||
105 | |||
106 | /** |
||
107 | * @throws \Exception |
||
108 | */ |
||
109 | protected function trainBinary(array $samples, array $targets, array $labels): void |
||
164 | |||
165 | /** |
||
166 | * Determines best split point for the given column |
||
167 | */ |
||
168 | protected function getBestNumericalSplit(array $samples, array $targets, int $col): array |
||
214 | |||
215 | protected function getBestNominalSplit(array $samples, array $targets, int $col): array |
||
241 | |||
242 | /** |
||
243 | * Calculates the ratio of wrong predictions based on the new threshold |
||
244 | * value given as the parameter |
||
245 | */ |
||
246 | protected function calculateErrorRate(array $targets, float $threshold, string $operator, array $values): array |
||
285 | |||
286 | /** |
||
287 | * Returns the probability of the sample of belonging to the given label |
||
288 | * |
||
289 | * Probability of a sample is calculated as the proportion of the label |
||
290 | * within the labels of the training samples in the decision node |
||
291 | * |
||
292 | * @param mixed $label |
||
293 | */ |
||
294 | protected function predictProbability(array $sample, $label): float |
||
303 | |||
304 | /** |
||
305 | * @return mixed |
||
306 | */ |
||
307 | protected function predictSampleBinary(array $sample) |
||
315 | |||
316 | protected function resetBinary(): void |
||
319 | } |
||
320 |
This check marks implicit conversions of arrays to boolean values in a comparison. While in PHP an empty array is considered to be equal (but not identical) to false, this is not always apparent.
Consider making the comparison explicit by using
empty(..)
or! empty(...)
instead.