@@ -1,6 +1,6 @@ |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\DimensionReduction; |
6 | 6 |
@@ -1,6 +1,6 @@ |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\Math\Statistic; |
6 | 6 |
@@ -1,6 +1,6 @@ |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\NeuralNetwork\ActivationFunction; |
6 | 6 |
@@ -1,6 +1,6 @@ |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\Math; |
6 | 6 |
@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\DimensionReduction; |
6 | 6 | |
@@ -145,20 +145,20 @@ discard block |
||
145 | 145 | switch ($this->kernel) { |
146 | 146 | case self::KERNEL_LINEAR: |
147 | 147 | // k(x,y) = xT.y |
148 | - return function ($x, $y) { |
|
148 | + return function($x, $y) { |
|
149 | 149 | return Matrix::dot($x, $y)[0]; |
150 | 150 | }; |
151 | 151 | case self::KERNEL_RBF: |
152 | 152 | // k(x,y)=exp(-γ.|x-y|) where |..| is Euclidean distance |
153 | 153 | $dist = new Euclidean(); |
154 | 154 | |
155 | - return function ($x, $y) use ($dist) { |
|
155 | + return function($x, $y) use ($dist) { |
|
156 | 156 | return exp(-$this->gamma * $dist->sqDistance($x, $y)); |
157 | 157 | }; |
158 | 158 | |
159 | 159 | case self::KERNEL_SIGMOID: |
160 | 160 | // k(x,y)=tanh(γ.xT.y+c0) where c0=1 |
161 | - return function ($x, $y) { |
|
161 | + return function($x, $y) { |
|
162 | 162 | $res = Matrix::dot($x, $y)[0] + 1.0; |
163 | 163 | |
164 | 164 | return tanh($this->gamma * $res); |
@@ -168,7 +168,7 @@ discard block |
||
168 | 168 | // k(x,y)=exp(-γ.|x-y|) where |..| is Manhattan distance |
169 | 169 | $dist = new Manhattan(); |
170 | 170 | |
171 | - return function ($x, $y) use ($dist) { |
|
171 | + return function($x, $y) use ($dist) { |
|
172 | 172 | return exp(-$this->gamma * $dist->distance($x, $y)); |
173 | 173 | }; |
174 | 174 | |
@@ -192,7 +192,7 @@ discard block |
||
192 | 192 | protected function projectSample(array $pairs) : array |
193 | 193 | { |
194 | 194 | // Normalize eigenvectors by eig = eigVectors / eigValues |
195 | - $func = function ($eigVal, $eigVect) { |
|
195 | + $func = function($eigVal, $eigVect) { |
|
196 | 196 | $m = new Matrix($eigVect, false); |
197 | 197 | $a = $m->divideByScalar($eigVal)->toArray(); |
198 | 198 |
@@ -1,6 +1,6 @@ |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | /** |
5 | 5 | * @package JAMA |
6 | 6 | * |
@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\Math; |
6 | 6 | |
@@ -126,7 +126,7 @@ discard block |
||
126 | 126 | public function transpose() : Matrix |
127 | 127 | { |
128 | 128 | if ($this->rows == 1) { |
129 | - $matrix = array_map(function ($el) { |
|
129 | + $matrix = array_map(function($el) { |
|
130 | 130 | return [$el]; |
131 | 131 | }, $this->matrix[0]); |
132 | 132 | } else { |
@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | /** |
5 | 5 | * Class to obtain eigenvalues and eigenvectors of a real matrix. |
6 | 6 | * |
@@ -842,7 +842,7 @@ discard block |
||
842 | 842 | |
843 | 843 | // Always return the eigenvectors of length 1.0 |
844 | 844 | $vectors = new Matrix($vectors); |
845 | - $vectors = array_map(function ($vect) { |
|
845 | + $vectors = array_map(function($vect) { |
|
846 | 846 | $sum = 0; |
847 | 847 | for ($i = 0; $i < count($vect); ++$i) { |
848 | 848 | $sum += $vect[$i] ** 2; |
@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\FeatureExtraction; |
6 | 6 | |
@@ -13,7 +13,7 @@ discard block |
||
13 | 13 | */ |
14 | 14 | private $idf; |
15 | 15 | |
16 | - public function __construct(?array $samples = null) |
|
16 | + public function __construct(? array $samples = null) |
|
17 | 17 | { |
18 | 18 | if ($samples) { |
19 | 19 | $this->fit($samples); |