Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
| 1 | <?php |
||
| 16 | class Perceptron implements Classifier, IncrementalEstimator |
||
| 17 | { |
||
| 18 | use Predictable, OneVsRest; |
||
| 19 | |||
| 20 | /** |
||
| 21 | * @var \Phpml\Helper\Optimizer\Optimizer |
||
| 22 | */ |
||
| 23 | protected $optimizer; |
||
| 24 | |||
| 25 | /** |
||
| 26 | * @var array |
||
| 27 | */ |
||
| 28 | protected $labels = []; |
||
| 29 | |||
| 30 | /** |
||
| 31 | * @var int |
||
| 32 | */ |
||
| 33 | protected $featureCount = 0; |
||
| 34 | |||
| 35 | /** |
||
| 36 | * @var array |
||
| 37 | */ |
||
| 38 | protected $weights; |
||
| 39 | |||
| 40 | /** |
||
| 41 | * @var float |
||
| 42 | */ |
||
| 43 | protected $learningRate; |
||
| 44 | |||
| 45 | /** |
||
| 46 | * @var int |
||
| 47 | */ |
||
| 48 | protected $maxIterations; |
||
| 49 | |||
| 50 | /** |
||
| 51 | * @var Normalizer |
||
| 52 | */ |
||
| 53 | protected $normalizer; |
||
| 54 | |||
| 55 | /** |
||
| 56 | * @var bool |
||
| 57 | */ |
||
| 58 | protected $enableEarlyStop = true; |
||
| 59 | |||
| 60 | /** |
||
| 61 | * @var array |
||
| 62 | */ |
||
| 63 | protected $costValues = []; |
||
| 64 | |||
| 65 | /** |
||
| 66 | * Initalize a perceptron classifier with given learning rate and maximum |
||
| 67 | * number of iterations used while training the perceptron <br> |
||
| 68 | * |
||
| 69 | * Learning rate should be a float value between 0.0(exclusive) and 1.0(inclusive) <br> |
||
| 70 | * Maximum number of iterations can be an integer value greater than 0 |
||
| 71 | * @param int $learningRate |
||
| 72 | * @param int $maxIterations |
||
| 73 | */ |
||
| 74 | public function __construct(float $learningRate = 0.001, int $maxIterations = 1000, |
||
| 92 | |||
| 93 | /** |
||
| 94 | * @param array $samples |
||
| 95 | * @param array $targets |
||
| 96 | * @param array $labels |
||
| 97 | */ |
||
| 98 | public function partialTrain(array $samples, array $targets, array $labels = array()) |
||
| 102 | |||
| 103 | /** |
||
| 104 | * @param array $samples |
||
| 105 | * @param array $targets |
||
| 106 | * @param array $labels |
||
| 107 | */ |
||
| 108 | public function trainBinary(array $samples, array $targets, array $labels) |
||
| 126 | |||
| 127 | protected function resetBinary() |
||
| 135 | |||
| 136 | /** |
||
| 137 | * Normally enabling early stopping for the optimization procedure may |
||
| 138 | * help saving processing time while in some cases it may result in |
||
| 139 | * premature convergence.<br> |
||
| 140 | * |
||
| 141 | * If "false" is given, the optimization procedure will always be executed |
||
| 142 | * for $maxIterations times |
||
| 143 | * |
||
| 144 | * @param bool $enable |
||
| 145 | */ |
||
| 146 | public function setEarlyStop(bool $enable = true) |
||
| 152 | |||
| 153 | /** |
||
| 154 | * Returns the cost values obtained during the training. |
||
| 155 | * |
||
| 156 | * @return array |
||
| 157 | */ |
||
| 158 | public function getCostValues() |
||
| 162 | |||
| 163 | /** |
||
| 164 | * Trains the perceptron model with Stochastic Gradient Descent optimization |
||
| 165 | * to get the correct set of weights |
||
| 166 | * |
||
| 167 | * @param array $samples |
||
| 168 | * @param array $targets |
||
| 169 | */ |
||
| 170 | protected function runTraining(array $samples, array $targets) |
||
| 185 | |||
| 186 | /** |
||
| 187 | * Executes a Gradient Descent algorithm for |
||
| 188 | * the given cost function |
||
| 189 | * |
||
| 190 | * @param array $samples |
||
| 191 | * @param array $targets |
||
| 192 | */ |
||
| 193 | protected function runGradientDescent(array $samples, array $targets, \Closure $gradientFunc, bool $isBatch = false) |
||
| 208 | |||
| 209 | /** |
||
| 210 | * Checks if the sample should be normalized and if so, returns the |
||
| 211 | * normalized sample |
||
| 212 | * |
||
| 213 | * @param array $sample |
||
| 214 | * |
||
| 215 | * @return array |
||
| 216 | */ |
||
| 217 | protected function checkNormalizedSample(array $sample) |
||
| 227 | |||
| 228 | /** |
||
| 229 | * Calculates net output of the network as a float value for the given input |
||
| 230 | * |
||
| 231 | * @param array $sample |
||
| 232 | * @return int |
||
| 233 | */ |
||
| 234 | protected function output(array $sample) |
||
| 247 | |||
| 248 | /** |
||
| 249 | * Returns the class value (either -1 or 1) for the given input |
||
| 250 | * |
||
| 251 | * @param array $sample |
||
| 252 | * @return int |
||
| 253 | */ |
||
| 254 | protected function outputClass(array $sample) |
||
| 258 | |||
| 259 | /** |
||
| 260 | * Returns the probability of the sample of belonging to the given label. |
||
| 261 | * |
||
| 262 | * The probability is simply taken as the distance of the sample |
||
| 263 | * to the decision plane. |
||
| 264 | * |
||
| 265 | * @param array $sample |
||
| 266 | * @param mixed $label |
||
| 267 | */ |
||
| 268 | View Code Duplication | protected function predictProbability(array $sample, $label) |
|
| 279 | |||
| 280 | /** |
||
| 281 | * @param array $sample |
||
| 282 | * @return mixed |
||
| 283 | */ |
||
| 284 | protected function predictSampleBinary(array $sample) |
||
| 292 | } |
||
| 293 |
Our type inference engine has found an assignment to a property that is incompatible with the declared type of that property.
Either this assignment is in error or the assigned type should be added to the documentation/type hint for that property..