@@ -1,6 +1,6 @@ |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml; |
6 | 6 |
@@ -136,9 +136,9 @@ |
||
136 | 136 | $N_K_N = $N->multiply($K_N); |
137 | 137 | |
138 | 138 | return $K->subtract($N_K) |
139 | - ->subtract($K_N) |
|
140 | - ->add($N_K_N) |
|
141 | - ->toArray(); |
|
139 | + ->subtract($K_N) |
|
140 | + ->add($N_K_N) |
|
141 | + ->toArray(); |
|
142 | 142 | } |
143 | 143 | |
144 | 144 | /** |
@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\DimensionReduction; |
6 | 6 | |
@@ -145,20 +145,20 @@ discard block |
||
145 | 145 | switch ($this->kernel) { |
146 | 146 | case self::KERNEL_LINEAR: |
147 | 147 | // k(x,y) = xT.y |
148 | - return function ($x, $y) { |
|
148 | + return function($x, $y) { |
|
149 | 149 | return Matrix::dot($x, $y)[0]; |
150 | 150 | }; |
151 | 151 | case self::KERNEL_RBF: |
152 | 152 | // k(x,y)=exp(-γ.|x-y|) where |..| is Euclidean distance |
153 | 153 | $dist = new Euclidean(); |
154 | 154 | |
155 | - return function ($x, $y) use ($dist) { |
|
155 | + return function($x, $y) use ($dist) { |
|
156 | 156 | return exp(-$this->gamma * $dist->sqDistance($x, $y)); |
157 | 157 | }; |
158 | 158 | |
159 | 159 | case self::KERNEL_SIGMOID: |
160 | 160 | // k(x,y)=tanh(γ.xT.y+c0) where c0=1 |
161 | - return function ($x, $y) { |
|
161 | + return function($x, $y) { |
|
162 | 162 | $res = Matrix::dot($x, $y)[0] + 1.0; |
163 | 163 | |
164 | 164 | return tanh($this->gamma * $res); |
@@ -168,7 +168,7 @@ discard block |
||
168 | 168 | // k(x,y)=exp(-γ.|x-y|) where |..| is Manhattan distance |
169 | 169 | $dist = new Manhattan(); |
170 | 170 | |
171 | - return function ($x, $y) use ($dist) { |
|
171 | + return function($x, $y) use ($dist) { |
|
172 | 172 | return exp(-$this->gamma * $dist->distance($x, $y)); |
173 | 173 | }; |
174 | 174 | |
@@ -192,7 +192,7 @@ discard block |
||
192 | 192 | protected function projectSample(array $pairs) : array |
193 | 193 | { |
194 | 194 | // Normalize eigenvectors by eig = eigVectors / eigValues |
195 | - $func = function ($eigVal, $eigVect) { |
|
195 | + $func = function($eigVal, $eigVect) { |
|
196 | 196 | $m = new Matrix($eigVect, false); |
197 | 197 | $a = $m->divideByScalar($eigVal)->toArray(); |
198 | 198 |
@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | /** |
5 | 5 | * |
6 | 6 | * Class to obtain eigenvalues and eigenvectors of a real matrix. |
@@ -838,7 +838,7 @@ discard block |
||
838 | 838 | |
839 | 839 | // Always return the eigenvectors of length 1.0 |
840 | 840 | $vectors = new Matrix($vectors); |
841 | - $vectors = array_map(function ($vect) { |
|
841 | + $vectors = array_map(function($vect) { |
|
842 | 842 | $sum = 0; |
843 | 843 | for ($i = 0; $i < count($vect); ++$i) { |
844 | 844 | $sum += $vect[$i] ** 2; |
@@ -65,24 +65,24 @@ |
||
65 | 65 | private $V = []; |
66 | 66 | |
67 | 67 | /** |
68 | - * Array for internal storage of nonsymmetric Hessenberg form. |
|
69 | - * |
|
70 | - * @var array |
|
71 | - */ |
|
68 | + * Array for internal storage of nonsymmetric Hessenberg form. |
|
69 | + * |
|
70 | + * @var array |
|
71 | + */ |
|
72 | 72 | private $H = []; |
73 | 73 | |
74 | 74 | /** |
75 | - * Working storage for nonsymmetric algorithm. |
|
76 | - * |
|
77 | - * @var array |
|
78 | - */ |
|
75 | + * Working storage for nonsymmetric algorithm. |
|
76 | + * |
|
77 | + * @var array |
|
78 | + */ |
|
79 | 79 | private $ort; |
80 | 80 | |
81 | 81 | /** |
82 | - * Used for complex scalar division. |
|
83 | - * |
|
84 | - * @var float |
|
85 | - */ |
|
82 | + * Used for complex scalar division. |
|
83 | + * |
|
84 | + * @var float |
|
85 | + */ |
|
86 | 86 | private $cdivr; |
87 | 87 | private $cdivi; |
88 | 88 |
@@ -1,6 +1,6 @@ |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\Math\Statistic; |
6 | 6 |
@@ -1,6 +1,6 @@ |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\DimensionReduction; |
6 | 6 |
@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\Classification\Linear; |
6 | 6 | |
@@ -170,7 +170,7 @@ discard block |
||
170 | 170 | protected function runTraining(array $samples, array $targets) |
171 | 171 | { |
172 | 172 | // The cost function is the sum of squares |
173 | - $callback = function ($weights, $sample, $target) { |
|
173 | + $callback = function($weights, $sample, $target) { |
|
174 | 174 | $this->weights = $weights; |
175 | 175 | |
176 | 176 | $prediction = $this->outputClass($sample); |
@@ -1,6 +1,6 @@ |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\Classification\Ensemble; |
6 | 6 |
@@ -1,6 +1,6 @@ |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\Helper\Optimizer; |
6 | 6 |
@@ -1,6 +1,6 @@ |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\Helper\Optimizer; |
6 | 6 |