@@ -1,6 +1,6 @@ |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Dataset\Demo; |
| 6 | 6 | |
@@ -1,6 +1,6 @@ |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Dataset\Demo; |
| 6 | 6 | |
@@ -1,6 +1,6 @@ |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Dataset; |
| 6 | 6 | |
@@ -1,6 +1,6 @@ |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Dataset; |
| 6 | 6 | |
@@ -1,6 +1,6 @@ |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Dataset; |
| 6 | 6 | |
@@ -1,6 +1,6 @@ |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Metric; |
| 6 | 6 | |
@@ -1,6 +1,6 @@ |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Metric; |
| 6 | 6 | |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification; |
| 6 | 6 | |
@@ -13,8 +13,8 @@ discard block |
||
| 13 | 13 | { |
| 14 | 14 | use Trainable, Predictable; |
| 15 | 15 | |
| 16 | - const CONTINUOS = 1; |
|
| 17 | - const NOMINAL = 2; |
|
| 16 | + const CONTINUOS = 1; |
|
| 17 | + const NOMINAL = 2; |
|
| 18 | 18 | const EPSILON = 1e-10; |
| 19 | 19 | |
| 20 | 20 | /** |
@@ -25,7 +25,7 @@ discard block |
||
| 25 | 25 | /** |
| 26 | 26 | * @var array |
| 27 | 27 | */ |
| 28 | - private $mean= []; |
|
| 28 | + private $mean = []; |
|
| 29 | 29 | |
| 30 | 30 | /** |
| 31 | 31 | * @var array |
@@ -86,10 +86,10 @@ discard block |
||
| 86 | 86 | private function calculateStatistics($label, $samples) |
| 87 | 87 | { |
| 88 | 88 | $this->std[$label] = array_fill(0, $this->featureCount, 0); |
| 89 | - $this->mean[$label]= array_fill(0, $this->featureCount, 0); |
|
| 89 | + $this->mean[$label] = array_fill(0, $this->featureCount, 0); |
|
| 90 | 90 | $this->dataType[$label] = array_fill(0, $this->featureCount, self::CONTINUOS); |
| 91 | 91 | $this->discreteProb[$label] = array_fill(0, $this->featureCount, self::CONTINUOS); |
| 92 | - for ($i=0; $i<$this->featureCount; $i++) { |
|
| 92 | + for ($i = 0; $i < $this->featureCount; $i++) { |
|
| 93 | 93 | // Get the values of nth column in the samples array |
| 94 | 94 | // Mean::arithmetic is called twice, can be optimized |
| 95 | 95 | $values = array_column($samples, $i); |
@@ -100,7 +100,7 @@ discard block |
||
| 100 | 100 | $this->dataType[$label][$i] = self::NOMINAL; |
| 101 | 101 | $this->discreteProb[$label][$i] = array_count_values($values); |
| 102 | 102 | $db = &$this->discreteProb[$label][$i]; |
| 103 | - $db = array_map(function ($el) use ($numValues) { |
|
| 103 | + $db = array_map(function($el) use ($numValues) { |
|
| 104 | 104 | return $el / $numValues; |
| 105 | 105 | }, $db); |
| 106 | 106 | } else { |
@@ -123,14 +123,14 @@ discard block |
||
| 123 | 123 | { |
| 124 | 124 | $value = $sample[$feature]; |
| 125 | 125 | if ($this->dataType[$label][$feature] == self::NOMINAL) { |
| 126 | - if (! isset($this->discreteProb[$label][$feature][$value]) || |
|
| 126 | + if (!isset($this->discreteProb[$label][$feature][$value]) || |
|
| 127 | 127 | $this->discreteProb[$label][$feature][$value] == 0) { |
| 128 | 128 | return self::EPSILON; |
| 129 | 129 | } |
| 130 | 130 | return $this->discreteProb[$label][$feature][$value]; |
| 131 | 131 | } |
| 132 | - $std = $this->std[$label][$feature] ; |
|
| 133 | - $mean= $this->mean[$label][$feature]; |
|
| 132 | + $std = $this->std[$label][$feature]; |
|
| 133 | + $mean = $this->mean[$label][$feature]; |
|
| 134 | 134 | // Calculate the probability density by use of normal/Gaussian distribution |
| 135 | 135 | // Ref: https://en.wikipedia.org/wiki/Normal_distribution |
| 136 | 136 | // |
@@ -138,7 +138,7 @@ discard block |
||
| 138 | 138 | // some libraries adopt taking log of calculations such as |
| 139 | 139 | // scikit-learn did. |
| 140 | 140 | // (See : https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/naive_bayes.py) |
| 141 | - $pdf = -0.5 * log(2.0 * pi() * $std * $std); |
|
| 141 | + $pdf = -0.5 * log(2.0 * pi() * $std * $std); |
|
| 142 | 142 | $pdf -= 0.5 * pow($value - $mean, 2) / ($std * $std); |
| 143 | 143 | return $pdf; |
| 144 | 144 | } |
@@ -151,7 +151,7 @@ discard block |
||
| 151 | 151 | private function getSamplesByLabel($label) |
| 152 | 152 | { |
| 153 | 153 | $samples = []; |
| 154 | - for ($i=0; $i<$this->sampleCount; $i++) { |
|
| 154 | + for ($i = 0; $i < $this->sampleCount; $i++) { |
|
| 155 | 155 | if ($this->targets[$i] == $label) { |
| 156 | 156 | $samples[] = $this->samples[$i]; |
| 157 | 157 | } |
@@ -171,7 +171,7 @@ discard block |
||
| 171 | 171 | $predictions = []; |
| 172 | 172 | foreach ($this->labels as $label) { |
| 173 | 173 | $p = $this->p[$label]; |
| 174 | - for ($i=0; $i<$this->featureCount; $i++) { |
|
| 174 | + for ($i = 0; $i < $this->featureCount; $i++) { |
|
| 175 | 175 | $Plf = $this->sampleProbability($sample, $i, $label); |
| 176 | 176 | $p += $Plf; |
| 177 | 177 | } |
@@ -1,6 +1,6 @@ |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Exception; |
| 6 | 6 | |