@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification\Ensemble; |
| 6 | 6 | |
@@ -140,7 +140,7 @@ discard block |
||
| 140 | 140 | $targets = []; |
| 141 | 141 | srand($index); |
| 142 | 142 | $bootstrapSize = $this->subsetRatio * $this->numSamples; |
| 143 | - for ($i=0; $i < $bootstrapSize; $i++) { |
|
| 143 | + for ($i = 0; $i < $bootstrapSize; $i++) { |
|
| 144 | 144 | $rand = rand(0, $this->numSamples - 1); |
| 145 | 145 | $samples[] = $this->samples[$rand]; |
| 146 | 146 | $targets[] = $this->targets[$rand]; |
@@ -154,7 +154,7 @@ discard block |
||
| 154 | 154 | protected function initClassifiers() |
| 155 | 155 | { |
| 156 | 156 | $classifiers = []; |
| 157 | - for ($i=0; $i<$this->numClassifier; $i++) { |
|
| 157 | + for ($i = 0; $i < $this->numClassifier; $i++) { |
|
| 158 | 158 | $ref = new \ReflectionClass($this->classifier); |
| 159 | 159 | if ($this->classifierOptions) { |
| 160 | 160 | $obj = $ref->newInstanceArgs($this->classifierOptions); |
@@ -52,7 +52,7 @@ |
||
| 52 | 52 | * If normalizeInputs is set to true, then every input given to the algorithm will be standardized |
| 53 | 53 | * by use of standard deviation and mean calculation |
| 54 | 54 | * |
| 55 | - * @param int $learningRate |
|
| 55 | + * @param double $learningRate |
|
| 56 | 56 | * @param int $maxIterations |
| 57 | 57 | */ |
| 58 | 58 | public function __construct(float $learningRate = 0.001, int $maxIterations = 1000, |
@@ -4,8 +4,6 @@ |
||
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification\Linear; |
| 6 | 6 | |
| 7 | -use Phpml\Classification\Classifier; |
|
| 8 | - |
|
| 9 | 7 | class Adaline extends Perceptron |
| 10 | 8 | { |
| 11 | 9 | |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification\Linear; |
| 6 | 6 | |
@@ -12,12 +12,12 @@ discard block |
||
| 12 | 12 | /** |
| 13 | 13 | * Batch training is the default Adaline training algorithm |
| 14 | 14 | */ |
| 15 | - const BATCH_TRAINING = 1; |
|
| 15 | + const BATCH_TRAINING = 1; |
|
| 16 | 16 | |
| 17 | 17 | /** |
| 18 | 18 | * Online training: Stochastic gradient descent learning |
| 19 | 19 | */ |
| 20 | - const ONLINE_TRAINING = 2; |
|
| 20 | + const ONLINE_TRAINING = 2; |
|
| 21 | 21 | |
| 22 | 22 | /** |
| 23 | 23 | * Training type may be either 'Batch' or 'Online' learning |
@@ -41,7 +41,7 @@ discard block |
||
| 41 | 41 | public function __construct(float $learningRate = 0.001, int $maxIterations = 1000, |
| 42 | 42 | bool $normalizeInputs = true, int $trainingType = self::BATCH_TRAINING) |
| 43 | 43 | { |
| 44 | - if (! in_array($trainingType, [self::BATCH_TRAINING, self::ONLINE_TRAINING])) { |
|
| 44 | + if (!in_array($trainingType, [self::BATCH_TRAINING, self::ONLINE_TRAINING])) { |
|
| 45 | 45 | throw new \Exception("Adaline can only be trained with batch and online/stochastic gradient descent algorithm"); |
| 46 | 46 | } |
| 47 | 47 | |
@@ -60,7 +60,7 @@ discard block |
||
| 60 | 60 | protected function runTraining(array $samples, array $targets) |
| 61 | 61 | { |
| 62 | 62 | // The cost function is the sum of squares |
| 63 | - $callback = function ($weights, $sample, $target) { |
|
| 63 | + $callback = function($weights, $sample, $target) { |
|
| 64 | 64 | $this->weights = $weights; |
| 65 | 65 | |
| 66 | 66 | $output = $this->output($sample); |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Preprocessing; |
| 6 | 6 | |
@@ -12,7 +12,7 @@ discard block |
||
| 12 | 12 | { |
| 13 | 13 | const NORM_L1 = 1; |
| 14 | 14 | const NORM_L2 = 2; |
| 15 | - const NORM_STD= 3; |
|
| 15 | + const NORM_STD = 3; |
|
| 16 | 16 | |
| 17 | 17 | /** |
| 18 | 18 | * @var int |
@@ -117,7 +117,7 @@ discard block |
||
| 117 | 117 | foreach ($sample as $feature) { |
| 118 | 118 | $norm2 += $feature * $feature; |
| 119 | 119 | } |
| 120 | - $norm2 = sqrt((float)$norm2); |
|
| 120 | + $norm2 = sqrt((float) $norm2); |
|
| 121 | 121 | |
| 122 | 122 | if (0 == $norm2) { |
| 123 | 123 | $sample = array_fill(0, count($sample), 1); |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification\DecisionTree; |
| 6 | 6 | |
@@ -34,7 +34,7 @@ discard block |
||
| 34 | 34 | /** |
| 35 | 35 | * @var DecisionTreeLeaf |
| 36 | 36 | */ |
| 37 | - public $rightLeaf= null; |
|
| 37 | + public $rightLeaf = null; |
|
| 38 | 38 | |
| 39 | 39 | /** |
| 40 | 40 | * @var array |
@@ -79,7 +79,7 @@ discard block |
||
| 79 | 79 | |
| 80 | 80 | if ($this->isContinuous) { |
| 81 | 81 | $op = $this->operator; |
| 82 | - $value= $this->numericValue; |
|
| 82 | + $value = $this->numericValue; |
|
| 83 | 83 | $recordField = strval($recordField); |
| 84 | 84 | eval("\$result = $recordField $op $value;"); |
| 85 | 85 | return $result; |
@@ -100,16 +100,16 @@ discard block |
||
| 100 | 100 | return 0.0; |
| 101 | 101 | } |
| 102 | 102 | |
| 103 | - $nodeSampleCount = (float)count($this->records); |
|
| 103 | + $nodeSampleCount = (float) count($this->records); |
|
| 104 | 104 | $iT = $this->giniIndex; |
| 105 | 105 | |
| 106 | 106 | if ($this->leftLeaf) { |
| 107 | - $pL = count($this->leftLeaf->records)/$nodeSampleCount; |
|
| 107 | + $pL = count($this->leftLeaf->records) / $nodeSampleCount; |
|
| 108 | 108 | $iT -= $pL * $this->leftLeaf->giniIndex; |
| 109 | 109 | } |
| 110 | 110 | |
| 111 | 111 | if ($this->rightLeaf) { |
| 112 | - $pR = count($this->rightLeaf->records)/$nodeSampleCount; |
|
| 112 | + $pR = count($this->rightLeaf->records) / $nodeSampleCount; |
|
| 113 | 113 | $iT -= $pR * $this->rightLeaf->giniIndex; |
| 114 | 114 | } |
| 115 | 115 | |
@@ -133,25 +133,25 @@ discard block |
||
| 133 | 133 | } else { |
| 134 | 134 | $col = "col_$this->columnIndex"; |
| 135 | 135 | } |
| 136 | - if (! preg_match("/^[<>=]{1,2}/", $value)) { |
|
| 136 | + if (!preg_match("/^[<>=]{1,2}/", $value)) { |
|
| 137 | 137 | $value = "=$value"; |
| 138 | 138 | } |
| 139 | - $value = "<b>$col $value</b><br>Gini: ". number_format($this->giniIndex, 2); |
|
| 139 | + $value = "<b>$col $value</b><br>Gini: ".number_format($this->giniIndex, 2); |
|
| 140 | 140 | } |
| 141 | 141 | $str = "<table ><tr><td colspan=3 align=center style='border:1px solid;'> |
| 142 | 142 | $value</td></tr>"; |
| 143 | 143 | if ($this->leftLeaf || $this->rightLeaf) { |
| 144 | - $str .='<tr>'; |
|
| 144 | + $str .= '<tr>'; |
|
| 145 | 145 | if ($this->leftLeaf) { |
| 146 | - $str .="<td valign=top><b>| Yes</b><br>" . $this->leftLeaf->getHTML($columnNames) . "</td>"; |
|
| 146 | + $str .= "<td valign=top><b>| Yes</b><br>".$this->leftLeaf->getHTML($columnNames)."</td>"; |
|
| 147 | 147 | } else { |
| 148 | - $str .='<td></td>'; |
|
| 148 | + $str .= '<td></td>'; |
|
| 149 | 149 | } |
| 150 | - $str .='<td> </td>'; |
|
| 150 | + $str .= '<td> </td>'; |
|
| 151 | 151 | if ($this->rightLeaf) { |
| 152 | - $str .="<td valign=top align=right><b>No |</b><br>" . $this->rightLeaf->getHTML($columnNames) . "</td>"; |
|
| 152 | + $str .= "<td valign=top align=right><b>No |</b><br>".$this->rightLeaf->getHTML($columnNames)."</td>"; |
|
| 153 | 153 | } else { |
| 154 | - $str .='<td></td>'; |
|
| 154 | + $str .= '<td></td>'; |
|
| 155 | 155 | } |
| 156 | 156 | $str .= '</tr>'; |
| 157 | 157 | } |
@@ -75,7 +75,7 @@ |
||
| 75 | 75 | * |
| 76 | 76 | * Learning rate should be a float value between 0.0(exclusive) and 1.0(inclusive) <br> |
| 77 | 77 | * Maximum number of iterations can be an integer value greater than 0 |
| 78 | - * @param int $learningRate |
|
| 78 | + * @param double $learningRate |
|
| 79 | 79 | * @param int $maxIterations |
| 80 | 80 | */ |
| 81 | 81 | public function __construct(float $learningRate = 0.001, int $maxIterations = 1000, |
@@ -97,7 +97,7 @@ |
||
| 97 | 97 | return $this->trainByLabel($samples, $targets, $labels); |
| 98 | 98 | } |
| 99 | 99 | |
| 100 | - /** |
|
| 100 | + /** |
|
| 101 | 101 | * @param array $samples |
| 102 | 102 | * @param array $targets |
| 103 | 103 | * @param array $labels |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification\Linear; |
| 6 | 6 | |
@@ -167,7 +167,7 @@ discard block |
||
| 167 | 167 | protected function runTraining(array $samples, array $targets) |
| 168 | 168 | { |
| 169 | 169 | // The cost function is the sum of squares |
| 170 | - $callback = function ($weights, $sample, $target) { |
|
| 170 | + $callback = function($weights, $sample, $target) { |
|
| 171 | 171 | $this->weights = $weights; |
| 172 | 172 | |
| 173 | 173 | $prediction = $this->outputClass($sample); |
@@ -189,7 +189,7 @@ discard block |
||
| 189 | 189 | */ |
| 190 | 190 | protected function runGradientDescent(array $samples, array $targets, \Closure $gradientFunc, bool $isBatch = false) |
| 191 | 191 | { |
| 192 | - $class = $isBatch ? GD::class : StochasticGD::class; |
|
| 192 | + $class = $isBatch ? GD::class : StochasticGD::class; |
|
| 193 | 193 | |
| 194 | 194 | if (empty($this->optimizer)) { |
| 195 | 195 | $this->optimizer = (new $class($this->featureCount)) |
@@ -284,6 +284,6 @@ discard block |
||
| 284 | 284 | |
| 285 | 285 | $predictedClass = $this->outputClass($sample); |
| 286 | 286 | |
| 287 | - return $this->labels[ $predictedClass ]; |
|
| 287 | + return $this->labels[$predictedClass]; |
|
| 288 | 288 | } |
| 289 | 289 | } |
@@ -226,7 +226,7 @@ |
||
| 226 | 226 | /** |
| 227 | 227 | * |
| 228 | 228 | * @param type $leftValue |
| 229 | - * @param type $operator |
|
| 229 | + * @param string $operator |
|
| 230 | 230 | * @param type $rightValue |
| 231 | 231 | * |
| 232 | 232 | * @return boolean |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification\Linear; |
| 6 | 6 | |
@@ -190,8 +190,8 @@ discard block |
||
| 190 | 190 | } |
| 191 | 191 | |
| 192 | 192 | // Try other possible points one by one |
| 193 | - for ($step = $minValue; $step <= $maxValue; $step+= $stepSize) { |
|
| 194 | - $threshold = (float)$step; |
|
| 193 | + for ($step = $minValue; $step <= $maxValue; $step += $stepSize) { |
|
| 194 | + $threshold = (float) $step; |
|
| 195 | 195 | list($errorRate, $prob) = $this->calculateErrorRate($targets, $threshold, $operator, $values); |
| 196 | 196 | if ($errorRate < $split['trainingErrorRate']) { |
| 197 | 197 | $split = ['value' => $threshold, 'operator' => $operator, |
@@ -215,7 +215,7 @@ discard block |
||
| 215 | 215 | { |
| 216 | 216 | $values = array_column($samples, $col); |
| 217 | 217 | $valueCounts = array_count_values($values); |
| 218 | - $distinctVals= array_keys($valueCounts); |
|
| 218 | + $distinctVals = array_keys($valueCounts); |
|
| 219 | 219 | |
| 220 | 220 | $split = null; |
| 221 | 221 | |
@@ -274,7 +274,7 @@ discard block |
||
| 274 | 274 | $wrong = 0.0; |
| 275 | 275 | $prob = []; |
| 276 | 276 | $leftLabel = $this->binaryLabels[0]; |
| 277 | - $rightLabel= $this->binaryLabels[1]; |
|
| 277 | + $rightLabel = $this->binaryLabels[1]; |
|
| 278 | 278 | |
| 279 | 279 | foreach ($values as $index => $value) { |
| 280 | 280 | if ($this->evaluate($value, $operator, $threshold)) { |
@@ -288,7 +288,7 @@ discard block |
||
| 288 | 288 | $wrong += $this->weights[$index]; |
| 289 | 289 | } |
| 290 | 290 | |
| 291 | - if (! isset($prob[$predicted][$target])) { |
|
| 291 | + if (!isset($prob[$predicted][$target])) { |
|
| 292 | 292 | $prob[$predicted][$target] = 0; |
| 293 | 293 | } |
| 294 | 294 | $prob[$predicted][$target]++; |
@@ -297,7 +297,7 @@ discard block |
||
| 297 | 297 | // Calculate probabilities: Proportion of labels in each leaf |
| 298 | 298 | $dist = array_combine($this->binaryLabels, array_fill(0, 2, 0.0)); |
| 299 | 299 | foreach ($prob as $leaf => $counts) { |
| 300 | - $leafTotal = (float)array_sum($prob[$leaf]); |
|
| 300 | + $leafTotal = (float) array_sum($prob[$leaf]); |
|
| 301 | 301 | foreach ($counts as $label => $count) { |
| 302 | 302 | if (strval($leaf) == strval($label)) { |
| 303 | 303 | $dist[$leaf] = $count / $leafTotal; |
@@ -348,8 +348,8 @@ discard block |
||
| 348 | 348 | */ |
| 349 | 349 | public function __toString() |
| 350 | 350 | { |
| 351 | - return "IF $this->column $this->operator $this->value " . |
|
| 352 | - "THEN " . $this->binaryLabels[0] . " ". |
|
| 353 | - "ELSE " . $this->binaryLabels[1]; |
|
| 351 | + return "IF $this->column $this->operator $this->value ". |
|
| 352 | + "THEN ".$this->binaryLabels[0]." ". |
|
| 353 | + "ELSE ".$this->binaryLabels[1]; |
|
| 354 | 354 | } |
| 355 | 355 | } |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification\Ensemble; |
| 6 | 6 | |
@@ -173,15 +173,15 @@ discard block |
||
| 173 | 173 | { |
| 174 | 174 | $weights = $this->weights; |
| 175 | 175 | $std = StandardDeviation::population($weights); |
| 176 | - $mean= Mean::arithmetic($weights); |
|
| 176 | + $mean = Mean::arithmetic($weights); |
|
| 177 | 177 | $min = min($weights); |
| 178 | - $minZ= (int)round(($min - $mean) / $std); |
|
| 178 | + $minZ = (int) round(($min - $mean) / $std); |
|
| 179 | 179 | |
| 180 | 180 | $samples = []; |
| 181 | 181 | $targets = []; |
| 182 | 182 | foreach ($weights as $index => $weight) { |
| 183 | - $z = (int)round(($weight - $mean) / $std) - $minZ + 1; |
|
| 184 | - for ($i=0; $i < $z; $i++) { |
|
| 183 | + $z = (int) round(($weight - $mean) / $std) - $minZ + 1; |
|
| 184 | + for ($i = 0; $i < $z; $i++) { |
|
| 185 | 185 | if (rand(0, 1) == 0) { |
| 186 | 186 | continue; |
| 187 | 187 | } |
@@ -260,6 +260,6 @@ discard block |
||
| 260 | 260 | $sum += $h * $alpha; |
| 261 | 261 | } |
| 262 | 262 | |
| 263 | - return $this->labels[ $sum > 0 ? 1 : -1]; |
|
| 263 | + return $this->labels[$sum > 0 ? 1 : -1]; |
|
| 264 | 264 | } |
| 265 | 265 | } |
@@ -1,6 +1,6 @@ |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification; |
| 6 | 6 | |
@@ -1,6 +1,6 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Math\Statistic; |
| 6 | 6 | |
@@ -39,7 +39,7 @@ discard block |
||
| 39 | 39 | // Ref: https://en.wikipedia.org/wiki/Normal_distribution |
| 40 | 40 | $std2 = $this->std ** 2; |
| 41 | 41 | $mean = $this->mean; |
| 42 | - return exp(- (($value - $mean) ** 2) / (2 * $std2)) / sqrt(2 * $std2 * pi()); |
|
| 42 | + return exp(-(($value - $mean) ** 2) / (2 * $std2)) / sqrt(2 * $std2 * pi()); |
|
| 43 | 43 | } |
| 44 | 44 | |
| 45 | 45 | /** |