|
1
|
|
|
<?php |
|
2
|
|
|
|
|
3
|
|
|
declare(strict_types=1); |
|
4
|
|
|
|
|
5
|
|
|
namespace Phpml\Clustering; |
|
6
|
|
|
|
|
7
|
|
|
use Phpml\Clustering\KMeans\Cluster; |
|
8
|
|
|
use Phpml\Clustering\KMeans\Point; |
|
9
|
|
|
use Phpml\Clustering\KMeans\Space; |
|
10
|
|
|
use Phpml\Exception\InvalidArgumentException; |
|
11
|
|
|
use Phpml\Math\Distance\Euclidean; |
|
12
|
|
|
|
|
13
|
|
|
class FuzzyCMeans implements Clusterer |
|
14
|
|
|
{ |
|
15
|
|
|
/** |
|
16
|
|
|
* @var int |
|
17
|
|
|
*/ |
|
18
|
|
|
private $clustersNumber; |
|
19
|
|
|
|
|
20
|
|
|
/** |
|
21
|
|
|
* @var Cluster[] |
|
22
|
|
|
*/ |
|
23
|
|
|
private $clusters = []; |
|
24
|
|
|
|
|
25
|
|
|
/** |
|
26
|
|
|
* @var Space |
|
27
|
|
|
*/ |
|
28
|
|
|
private $space; |
|
29
|
|
|
|
|
30
|
|
|
/** |
|
31
|
|
|
* @var float[][] |
|
32
|
|
|
*/ |
|
33
|
|
|
private $membership = []; |
|
34
|
|
|
|
|
35
|
|
|
/** |
|
36
|
|
|
* @var float |
|
37
|
|
|
*/ |
|
38
|
|
|
private $fuzziness; |
|
39
|
|
|
|
|
40
|
|
|
/** |
|
41
|
|
|
* @var float |
|
42
|
|
|
*/ |
|
43
|
|
|
private $epsilon; |
|
44
|
|
|
|
|
45
|
|
|
/** |
|
46
|
|
|
* @var int |
|
47
|
|
|
*/ |
|
48
|
|
|
private $maxIterations; |
|
49
|
|
|
|
|
50
|
|
|
/** |
|
51
|
|
|
* @var int |
|
52
|
|
|
*/ |
|
53
|
|
|
private $sampleCount; |
|
54
|
|
|
|
|
55
|
|
|
/** |
|
56
|
|
|
* @var array |
|
57
|
|
|
*/ |
|
58
|
|
|
private $samples = []; |
|
59
|
|
|
|
|
60
|
|
|
/** |
|
61
|
|
|
* @throws InvalidArgumentException |
|
62
|
|
|
*/ |
|
63
|
|
|
public function __construct(int $clustersNumber, float $fuzziness = 2.0, float $epsilon = 1e-2, int $maxIterations = 100) |
|
64
|
|
|
{ |
|
65
|
|
|
if ($clustersNumber <= 0) { |
|
66
|
|
|
throw new InvalidArgumentException('Invalid clusters number'); |
|
67
|
|
|
} |
|
68
|
|
|
|
|
69
|
|
|
$this->clustersNumber = $clustersNumber; |
|
70
|
|
|
$this->fuzziness = $fuzziness; |
|
71
|
|
|
$this->epsilon = $epsilon; |
|
72
|
|
|
$this->maxIterations = $maxIterations; |
|
73
|
|
|
} |
|
74
|
|
|
|
|
75
|
|
|
public function getMembershipMatrix(): array |
|
76
|
|
|
{ |
|
77
|
|
|
return $this->membership; |
|
78
|
|
|
} |
|
79
|
|
|
|
|
80
|
|
|
public function cluster(array $samples): array |
|
81
|
|
|
{ |
|
82
|
|
|
// Initialize variables, clusters and membership matrix |
|
83
|
|
|
$this->sampleCount = count($samples); |
|
84
|
|
|
$this->samples = &$samples; |
|
85
|
|
|
$this->space = new Space(count($samples[0])); |
|
86
|
|
|
$this->initClusters(); |
|
87
|
|
|
|
|
88
|
|
|
// Our goal is minimizing the objective value while |
|
89
|
|
|
// executing the clustering steps at a maximum number of iterations |
|
90
|
|
|
$lastObjective = 0.0; |
|
91
|
|
|
$iterations = 0; |
|
92
|
|
|
do { |
|
93
|
|
|
// Update the membership matrix and cluster centers, respectively |
|
94
|
|
|
$this->updateMembershipMatrix(); |
|
95
|
|
|
$this->updateClusters(); |
|
96
|
|
|
|
|
97
|
|
|
// Calculate the new value of the objective function |
|
98
|
|
|
$objectiveVal = $this->getObjective(); |
|
99
|
|
|
$difference = abs($lastObjective - $objectiveVal); |
|
100
|
|
|
$lastObjective = $objectiveVal; |
|
101
|
|
|
} while ($difference > $this->epsilon && $iterations++ <= $this->maxIterations); |
|
102
|
|
|
|
|
103
|
|
|
// Attach (hard cluster) each data point to the nearest cluster |
|
104
|
|
|
for ($k = 0; $k < $this->sampleCount; ++$k) { |
|
105
|
|
|
$column = array_column($this->membership, $k); |
|
106
|
|
|
arsort($column); |
|
107
|
|
|
reset($column); |
|
108
|
|
|
$cluster = $this->clusters[key($column)]; |
|
109
|
|
|
$cluster->attach(new Point($this->samples[$k])); |
|
110
|
|
|
} |
|
111
|
|
|
|
|
112
|
|
|
// Return grouped samples |
|
113
|
|
|
$grouped = []; |
|
114
|
|
|
foreach ($this->clusters as $cluster) { |
|
115
|
|
|
$grouped[] = $cluster->getPoints(); |
|
116
|
|
|
} |
|
117
|
|
|
|
|
118
|
|
|
return $grouped; |
|
119
|
|
|
} |
|
120
|
|
|
|
|
121
|
|
|
protected function initClusters(): void |
|
122
|
|
|
{ |
|
123
|
|
|
// Membership array is a matrix of cluster number by sample counts |
|
124
|
|
|
// We initilize the membership array with random values |
|
125
|
|
|
$dim = $this->space->getDimension(); |
|
126
|
|
|
$this->generateRandomMembership($dim, $this->sampleCount); |
|
127
|
|
|
$this->updateClusters(); |
|
128
|
|
|
} |
|
129
|
|
|
|
|
130
|
|
|
protected function generateRandomMembership(int $rows, int $cols): void |
|
131
|
|
|
{ |
|
132
|
|
|
$this->membership = []; |
|
133
|
|
|
for ($i = 0; $i < $rows; ++$i) { |
|
134
|
|
|
$row = []; |
|
135
|
|
|
$total = 0.0; |
|
136
|
|
|
for ($k = 0; $k < $cols; ++$k) { |
|
137
|
|
|
$val = random_int(1, 5) / 10.0; |
|
138
|
|
|
$row[] = $val; |
|
139
|
|
|
$total += $val; |
|
140
|
|
|
} |
|
141
|
|
|
|
|
142
|
|
|
$this->membership[] = array_map(function ($val) use ($total) { |
|
143
|
|
|
return $val / $total; |
|
144
|
|
|
}, $row); |
|
145
|
|
|
} |
|
146
|
|
|
} |
|
147
|
|
|
|
|
148
|
|
|
protected function updateClusters(): void |
|
149
|
|
|
{ |
|
150
|
|
|
$dim = $this->space->getDimension(); |
|
151
|
|
|
if (count($this->clusters) === 0) { |
|
152
|
|
|
for ($i = 0; $i < $this->clustersNumber; ++$i) { |
|
153
|
|
|
$this->clusters[] = new Cluster($this->space, array_fill(0, $dim, 0.0)); |
|
154
|
|
|
} |
|
155
|
|
|
} |
|
156
|
|
|
|
|
157
|
|
|
for ($i = 0; $i < $this->clustersNumber; ++$i) { |
|
158
|
|
|
$cluster = $this->clusters[$i]; |
|
159
|
|
|
$center = $cluster->getCoordinates(); |
|
160
|
|
|
for ($k = 0; $k < $dim; ++$k) { |
|
161
|
|
|
$a = $this->getMembershipRowTotal($i, $k, true); |
|
162
|
|
|
$b = $this->getMembershipRowTotal($i, $k, false); |
|
163
|
|
|
$center[$k] = $a / $b; |
|
164
|
|
|
} |
|
165
|
|
|
|
|
166
|
|
|
$cluster->setCoordinates($center); |
|
167
|
|
|
} |
|
168
|
|
|
} |
|
169
|
|
|
|
|
170
|
|
|
protected function getMembershipRowTotal(int $row, int $col, bool $multiply): float |
|
171
|
|
|
{ |
|
172
|
|
|
$sum = 0.0; |
|
173
|
|
|
for ($k = 0; $k < $this->sampleCount; ++$k) { |
|
174
|
|
|
$val = $this->membership[$row][$k] ** $this->fuzziness; |
|
175
|
|
|
if ($multiply) { |
|
176
|
|
|
$val *= $this->samples[$k][$col]; |
|
177
|
|
|
} |
|
178
|
|
|
|
|
179
|
|
|
$sum += $val; |
|
180
|
|
|
} |
|
181
|
|
|
|
|
182
|
|
|
return $sum; |
|
183
|
|
|
} |
|
184
|
|
|
|
|
185
|
|
|
protected function updateMembershipMatrix(): void |
|
186
|
|
|
{ |
|
187
|
|
|
for ($i = 0; $i < $this->clustersNumber; ++$i) { |
|
188
|
|
|
for ($k = 0; $k < $this->sampleCount; ++$k) { |
|
189
|
|
|
$distCalc = $this->getDistanceCalc($i, $k); |
|
190
|
|
|
$this->membership[$i][$k] = 1.0 / $distCalc; |
|
191
|
|
|
} |
|
192
|
|
|
} |
|
193
|
|
|
} |
|
194
|
|
|
|
|
195
|
|
|
protected function getDistanceCalc(int $row, int $col): float |
|
196
|
|
|
{ |
|
197
|
|
|
$sum = 0.0; |
|
198
|
|
|
$distance = new Euclidean(); |
|
199
|
|
|
$dist1 = $distance->distance( |
|
200
|
|
|
$this->clusters[$row]->getCoordinates(), |
|
201
|
|
|
$this->samples[$col] |
|
202
|
|
|
); |
|
203
|
|
|
|
|
204
|
|
|
for ($j = 0; $j < $this->clustersNumber; ++$j) { |
|
205
|
|
|
$dist2 = $distance->distance( |
|
206
|
|
|
$this->clusters[$j]->getCoordinates(), |
|
207
|
|
|
$this->samples[$col] |
|
208
|
|
|
); |
|
209
|
|
|
|
|
210
|
|
|
$val = (($dist1 / $dist2) ** 2.0) / ($this->fuzziness - 1); |
|
211
|
|
|
$sum += $val; |
|
212
|
|
|
} |
|
213
|
|
|
|
|
214
|
|
|
return $sum; |
|
215
|
|
|
} |
|
216
|
|
|
|
|
217
|
|
|
/** |
|
218
|
|
|
* The objective is to minimize the distance between all data points |
|
219
|
|
|
* and all cluster centers. This method returns the summation of all |
|
220
|
|
|
* these distances |
|
221
|
|
|
*/ |
|
222
|
|
|
protected function getObjective(): float |
|
223
|
|
|
{ |
|
224
|
|
|
$sum = 0.0; |
|
225
|
|
|
$distance = new Euclidean(); |
|
226
|
|
|
for ($i = 0; $i < $this->clustersNumber; ++$i) { |
|
227
|
|
|
$clust = $this->clusters[$i]->getCoordinates(); |
|
228
|
|
|
for ($k = 0; $k < $this->sampleCount; ++$k) { |
|
229
|
|
|
$point = $this->samples[$k]; |
|
230
|
|
|
$sum += $distance->distance($clust, $point); |
|
231
|
|
|
} |
|
232
|
|
|
} |
|
233
|
|
|
|
|
234
|
|
|
return $sum; |
|
235
|
|
|
} |
|
236
|
|
|
} |
|
237
|
|
|
|