|
1
|
|
|
<?php |
|
2
|
|
|
|
|
3
|
|
|
declare(strict_types=1); |
|
4
|
|
|
|
|
5
|
|
|
namespace Phpml\Classification\Ensemble; |
|
6
|
|
|
|
|
7
|
|
|
use Phpml\Classification\Classifier; |
|
8
|
|
|
use Phpml\Classification\Linear\DecisionStump; |
|
9
|
|
|
use Phpml\Classification\WeightedClassifier; |
|
10
|
|
|
use Phpml\Exception\InvalidArgumentException; |
|
11
|
|
|
use Phpml\Helper\Predictable; |
|
12
|
|
|
use Phpml\Helper\Trainable; |
|
13
|
|
|
use Phpml\Math\Statistic\Mean; |
|
14
|
|
|
use Phpml\Math\Statistic\StandardDeviation; |
|
15
|
|
|
use ReflectionClass; |
|
16
|
|
|
|
|
17
|
|
|
class AdaBoost implements Classifier |
|
18
|
|
|
{ |
|
19
|
|
|
use Predictable; |
|
20
|
|
|
use Trainable; |
|
21
|
|
|
|
|
22
|
|
|
/** |
|
23
|
|
|
* Actual labels given in the targets array |
|
24
|
|
|
* |
|
25
|
|
|
* @var array |
|
26
|
|
|
*/ |
|
27
|
|
|
protected $labels = []; |
|
28
|
|
|
|
|
29
|
|
|
/** |
|
30
|
|
|
* @var int |
|
31
|
|
|
*/ |
|
32
|
|
|
protected $sampleCount; |
|
33
|
|
|
|
|
34
|
|
|
/** |
|
35
|
|
|
* @var int |
|
36
|
|
|
*/ |
|
37
|
|
|
protected $featureCount; |
|
38
|
|
|
|
|
39
|
|
|
/** |
|
40
|
|
|
* Number of maximum iterations to be done |
|
41
|
|
|
* |
|
42
|
|
|
* @var int |
|
43
|
|
|
*/ |
|
44
|
|
|
protected $maxIterations; |
|
45
|
|
|
|
|
46
|
|
|
/** |
|
47
|
|
|
* Sample weights |
|
48
|
|
|
* |
|
49
|
|
|
* @var array |
|
50
|
|
|
*/ |
|
51
|
|
|
protected $weights = []; |
|
52
|
|
|
|
|
53
|
|
|
/** |
|
54
|
|
|
* List of selected 'weak' classifiers |
|
55
|
|
|
* |
|
56
|
|
|
* @var array |
|
57
|
|
|
*/ |
|
58
|
|
|
protected $classifiers = []; |
|
59
|
|
|
|
|
60
|
|
|
/** |
|
61
|
|
|
* Base classifier weights |
|
62
|
|
|
* |
|
63
|
|
|
* @var array |
|
64
|
|
|
*/ |
|
65
|
|
|
protected $alpha = []; |
|
66
|
|
|
|
|
67
|
|
|
/** |
|
68
|
|
|
* @var string |
|
69
|
|
|
*/ |
|
70
|
|
|
protected $baseClassifier = DecisionStump::class; |
|
71
|
|
|
|
|
72
|
|
|
/** |
|
73
|
|
|
* @var array |
|
74
|
|
|
*/ |
|
75
|
|
|
protected $classifierOptions = []; |
|
76
|
|
|
|
|
77
|
|
|
/** |
|
78
|
|
|
* ADAptive BOOSTing (AdaBoost) is an ensemble algorithm to |
|
79
|
|
|
* improve classification performance of 'weak' classifiers such as |
|
80
|
|
|
* DecisionStump (default base classifier of AdaBoost). |
|
81
|
|
|
*/ |
|
82
|
|
|
public function __construct(int $maxIterations = 50) |
|
83
|
|
|
{ |
|
84
|
|
|
$this->maxIterations = $maxIterations; |
|
85
|
|
|
} |
|
86
|
|
|
|
|
87
|
|
|
/** |
|
88
|
|
|
* Sets the base classifier that will be used for boosting (default = DecisionStump) |
|
89
|
|
|
*/ |
|
90
|
|
|
public function setBaseClassifier(string $baseClassifier = DecisionStump::class, array $classifierOptions = []): void |
|
91
|
|
|
{ |
|
92
|
|
|
$this->baseClassifier = $baseClassifier; |
|
93
|
|
|
$this->classifierOptions = $classifierOptions; |
|
94
|
|
|
} |
|
95
|
|
|
|
|
96
|
|
|
/** |
|
97
|
|
|
* @throws InvalidArgumentException |
|
98
|
|
|
*/ |
|
99
|
|
|
public function train(array $samples, array $targets): void |
|
100
|
|
|
{ |
|
101
|
|
|
// Initialize usual variables |
|
102
|
|
|
$this->labels = array_keys(array_count_values($targets)); |
|
103
|
|
|
if (count($this->labels) !== 2) { |
|
104
|
|
|
throw new InvalidArgumentException('AdaBoost is a binary classifier and can classify between two classes only'); |
|
105
|
|
|
} |
|
106
|
|
|
|
|
107
|
|
|
// Set all target values to either -1 or 1 |
|
108
|
|
|
$this->labels = [ |
|
109
|
|
|
1 => $this->labels[0], |
|
110
|
|
|
-1 => $this->labels[1], |
|
111
|
|
|
]; |
|
112
|
|
|
foreach ($targets as $target) { |
|
113
|
|
|
$this->targets[] = $target == $this->labels[1] ? 1 : -1; |
|
114
|
|
|
} |
|
115
|
|
|
|
|
116
|
|
|
$this->samples = array_merge($this->samples, $samples); |
|
117
|
|
|
$this->featureCount = count($samples[0]); |
|
118
|
|
|
$this->sampleCount = count($this->samples); |
|
119
|
|
|
|
|
120
|
|
|
// Initialize AdaBoost parameters |
|
121
|
|
|
$this->weights = array_fill(0, $this->sampleCount, 1.0 / $this->sampleCount); |
|
122
|
|
|
$this->classifiers = []; |
|
123
|
|
|
$this->alpha = []; |
|
124
|
|
|
|
|
125
|
|
|
// Execute the algorithm for a maximum number of iterations |
|
126
|
|
|
$currIter = 0; |
|
127
|
|
|
while ($this->maxIterations > $currIter++) { |
|
128
|
|
|
// Determine the best 'weak' classifier based on current weights |
|
129
|
|
|
$classifier = $this->getBestClassifier(); |
|
130
|
|
|
$errorRate = $this->evaluateClassifier($classifier); |
|
131
|
|
|
|
|
132
|
|
|
// Update alpha & weight values at each iteration |
|
133
|
|
|
$alpha = $this->calculateAlpha($errorRate); |
|
134
|
|
|
$this->updateWeights($classifier, $alpha); |
|
135
|
|
|
|
|
136
|
|
|
$this->classifiers[] = $classifier; |
|
137
|
|
|
$this->alpha[] = $alpha; |
|
138
|
|
|
} |
|
139
|
|
|
} |
|
140
|
|
|
|
|
141
|
|
|
/** |
|
142
|
|
|
* @return mixed |
|
143
|
|
|
*/ |
|
144
|
|
|
public function predictSample(array $sample) |
|
145
|
|
|
{ |
|
146
|
|
|
$sum = 0; |
|
147
|
|
|
foreach ($this->alpha as $index => $alpha) { |
|
148
|
|
|
$h = $this->classifiers[$index]->predict($sample); |
|
149
|
|
|
$sum += $h * $alpha; |
|
150
|
|
|
} |
|
151
|
|
|
|
|
152
|
|
|
return $this->labels[$sum > 0 ? 1 : -1]; |
|
153
|
|
|
} |
|
154
|
|
|
|
|
155
|
|
|
/** |
|
156
|
|
|
* Returns the classifier with the lowest error rate with the |
|
157
|
|
|
* consideration of current sample weights |
|
158
|
|
|
*/ |
|
159
|
|
|
protected function getBestClassifier(): Classifier |
|
160
|
|
|
{ |
|
161
|
|
|
$ref = new ReflectionClass($this->baseClassifier); |
|
162
|
|
|
/** @var Classifier $classifier */ |
|
163
|
|
|
$classifier = count($this->classifierOptions) === 0 ? $ref->newInstance() : $ref->newInstanceArgs($this->classifierOptions); |
|
164
|
|
|
|
|
165
|
|
|
if ($classifier instanceof WeightedClassifier) { |
|
166
|
|
|
$classifier->setSampleWeights($this->weights); |
|
167
|
|
|
$classifier->train($this->samples, $this->targets); |
|
168
|
|
|
} else { |
|
169
|
|
|
[$samples, $targets] = $this->resample(); |
|
170
|
|
|
$classifier->train($samples, $targets); |
|
171
|
|
|
} |
|
172
|
|
|
|
|
173
|
|
|
return $classifier; |
|
174
|
|
|
} |
|
175
|
|
|
|
|
176
|
|
|
/** |
|
177
|
|
|
* Resamples the dataset in accordance with the weights and |
|
178
|
|
|
* returns the new dataset |
|
179
|
|
|
*/ |
|
180
|
|
|
protected function resample(): array |
|
181
|
|
|
{ |
|
182
|
|
|
$weights = $this->weights; |
|
183
|
|
|
$std = StandardDeviation::population($weights); |
|
184
|
|
|
$mean = Mean::arithmetic($weights); |
|
185
|
|
|
$min = min($weights); |
|
186
|
|
|
$minZ = (int) round(($min - $mean) / $std); |
|
187
|
|
|
|
|
188
|
|
|
$samples = []; |
|
189
|
|
|
$targets = []; |
|
190
|
|
|
foreach ($weights as $index => $weight) { |
|
191
|
|
|
$z = (int) round(($weight - $mean) / $std) - $minZ + 1; |
|
192
|
|
|
for ($i = 0; $i < $z; ++$i) { |
|
193
|
|
|
if (random_int(0, 1) == 0) { |
|
194
|
|
|
continue; |
|
195
|
|
|
} |
|
196
|
|
|
|
|
197
|
|
|
$samples[] = $this->samples[$index]; |
|
198
|
|
|
$targets[] = $this->targets[$index]; |
|
199
|
|
|
} |
|
200
|
|
|
} |
|
201
|
|
|
|
|
202
|
|
|
return [$samples, $targets]; |
|
203
|
|
|
} |
|
204
|
|
|
|
|
205
|
|
|
/** |
|
206
|
|
|
* Evaluates the classifier and returns the classification error rate |
|
207
|
|
|
*/ |
|
208
|
|
|
protected function evaluateClassifier(Classifier $classifier): float |
|
209
|
|
|
{ |
|
210
|
|
|
$total = (float) array_sum($this->weights); |
|
211
|
|
|
$wrong = 0; |
|
212
|
|
|
foreach ($this->samples as $index => $sample) { |
|
213
|
|
|
$predicted = $classifier->predict($sample); |
|
214
|
|
|
if ($predicted != $this->targets[$index]) { |
|
215
|
|
|
$wrong += $this->weights[$index]; |
|
216
|
|
|
} |
|
217
|
|
|
} |
|
218
|
|
|
|
|
219
|
|
|
return $wrong / $total; |
|
220
|
|
|
} |
|
221
|
|
|
|
|
222
|
|
|
/** |
|
223
|
|
|
* Calculates alpha of a classifier |
|
224
|
|
|
*/ |
|
225
|
|
|
protected function calculateAlpha(float $errorRate): float |
|
226
|
|
|
{ |
|
227
|
|
|
if ($errorRate == 0) { |
|
228
|
|
|
$errorRate = 1e-10; |
|
229
|
|
|
} |
|
230
|
|
|
|
|
231
|
|
|
return 0.5 * log((1 - $errorRate) / $errorRate); |
|
232
|
|
|
} |
|
233
|
|
|
|
|
234
|
|
|
/** |
|
235
|
|
|
* Updates the sample weights |
|
236
|
|
|
*/ |
|
237
|
|
|
protected function updateWeights(Classifier $classifier, float $alpha): void |
|
238
|
|
|
{ |
|
239
|
|
|
$sumOfWeights = array_sum($this->weights); |
|
240
|
|
|
$weightsT1 = []; |
|
241
|
|
|
foreach ($this->weights as $index => $weight) { |
|
242
|
|
|
$desired = $this->targets[$index]; |
|
243
|
|
|
$output = $classifier->predict($this->samples[$index]); |
|
244
|
|
|
|
|
245
|
|
|
$weight *= exp(-$alpha * $desired * $output) / $sumOfWeights; |
|
246
|
|
|
|
|
247
|
|
|
$weightsT1[] = $weight; |
|
248
|
|
|
} |
|
249
|
|
|
|
|
250
|
|
|
$this->weights = $weightsT1; |
|
251
|
|
|
} |
|
252
|
|
|
} |
|
253
|
|
|
|