@@ -1,6 +1,6 @@ |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\NeuralNetwork\Training\Backpropagation; |
| 6 | 6 | |
@@ -1,6 +1,6 @@ |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\NeuralNetwork\ActivationFunction; |
| 6 | 6 | |
@@ -1,6 +1,6 @@ |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\NeuralNetwork\Network; |
| 6 | 6 | |
@@ -1,6 +1,6 @@ |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\CrossValidation; |
| 6 | 6 | |
@@ -1,6 +1,6 @@ |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Tokenization; |
| 6 | 6 | |
@@ -1,6 +1,6 @@ |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Classification; |
| 6 | 6 | |
@@ -1,6 +1,6 @@ |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\SupportVectorMachine; |
| 6 | 6 | |
@@ -17,7 +17,7 @@ discard block |
||
| 17 | 17 | protected $dimension; |
| 18 | 18 | |
| 19 | 19 | /** |
| 20 | - * @param $dimension |
|
| 20 | + * @param integer $dimension |
|
| 21 | 21 | */ |
| 22 | 22 | public function __construct($dimension) |
| 23 | 23 | { |
@@ -225,7 +225,7 @@ discard block |
||
| 225 | 225 | /** |
| 226 | 226 | * @param int $clustersNumber |
| 227 | 227 | * |
| 228 | - * @return array |
|
| 228 | + * @return Cluster[] |
|
| 229 | 229 | */ |
| 230 | 230 | protected function initializeKMPPClusters(int $clustersNumber) |
| 231 | 231 | { |
@@ -1,6 +1,6 @@ |
||
| 1 | 1 | <?php |
| 2 | 2 | |
| 3 | -declare(strict_types=1); |
|
| 3 | +declare(strict_types = 1); |
|
| 4 | 4 | |
| 5 | 5 | namespace Phpml\Clustering\KMeans; |
| 6 | 6 | |
@@ -1,5 +1,5 @@ discard block |
||
| 1 | 1 | <?php |
| 2 | -declare(strict_types=1); |
|
| 2 | +declare(strict_types = 1); |
|
| 3 | 3 | |
| 4 | 4 | namespace Phpml\Clustering; |
| 5 | 5 | |
@@ -85,15 +85,15 @@ discard block |
||
| 85 | 85 | protected function generateRandomMembership(int $rows, int $cols) |
| 86 | 86 | { |
| 87 | 87 | $this->membership = []; |
| 88 | - for ($i=0; $i < $rows; $i++) { |
|
| 88 | + for ($i = 0; $i < $rows; $i++) { |
|
| 89 | 89 | $row = []; |
| 90 | 90 | $total = 0.0; |
| 91 | - for ($k=0; $k < $cols; $k++) { |
|
| 91 | + for ($k = 0; $k < $cols; $k++) { |
|
| 92 | 92 | $val = rand(1, 5) / 10.0; |
| 93 | 93 | $row[] = $val; |
| 94 | 94 | $total += $val; |
| 95 | 95 | } |
| 96 | - $this->membership[] = array_map(function ($val) use ($total) { |
|
| 96 | + $this->membership[] = array_map(function($val) use ($total) { |
|
| 97 | 97 | return $val / $total; |
| 98 | 98 | }, $row); |
| 99 | 99 | } |
@@ -102,17 +102,17 @@ discard block |
||
| 102 | 102 | protected function updateClusters() |
| 103 | 103 | { |
| 104 | 104 | $dim = $this->space->getDimension(); |
| 105 | - if (! $this->clusters) { |
|
| 105 | + if (!$this->clusters) { |
|
| 106 | 106 | $this->clusters = []; |
| 107 | - for ($i=0; $i<$this->clustersNumber; $i++) { |
|
| 107 | + for ($i = 0; $i < $this->clustersNumber; $i++) { |
|
| 108 | 108 | $this->clusters[] = new Cluster($this->space, array_fill(0, $dim, 0.0)); |
| 109 | 109 | } |
| 110 | 110 | } |
| 111 | 111 | |
| 112 | - for ($i=0; $i<$this->clustersNumber; $i++) { |
|
| 112 | + for ($i = 0; $i < $this->clustersNumber; $i++) { |
|
| 113 | 113 | $cluster = $this->clusters[$i]; |
| 114 | 114 | $center = $cluster->getCoordinates(); |
| 115 | - for ($k=0; $k<$dim; $k++) { |
|
| 115 | + for ($k = 0; $k < $dim; $k++) { |
|
| 116 | 116 | $a = $this->getMembershipRowTotal($i, $k, true); |
| 117 | 117 | $b = $this->getMembershipRowTotal($i, $k, false); |
| 118 | 118 | $center[$k] = $a / $b; |
@@ -202,7 +202,7 @@ discard block |
||
| 202 | 202 | { |
| 203 | 203 | // Initialize variables, clusters and membership matrix |
| 204 | 204 | $this->sampleCount = count($samples); |
| 205 | - $this->samples =& $samples; |
|
| 205 | + $this->samples = & $samples; |
|
| 206 | 206 | $this->space = new Space(count($samples[0])); |
| 207 | 207 | $this->initClusters(); |
| 208 | 208 | |
@@ -223,7 +223,7 @@ discard block |
||
| 223 | 223 | } while ($difference > $this->epsilon && $iterations++ <= $this->maxIterations); |
| 224 | 224 | |
| 225 | 225 | // Attach (hard cluster) each data point to the nearest cluster |
| 226 | - for ($k=0; $k<$this->sampleCount; $k++) { |
|
| 226 | + for ($k = 0; $k < $this->sampleCount; $k++) { |
|
| 227 | 227 | $column = array_column($this->membership, $k); |
| 228 | 228 | arsort($column); |
| 229 | 229 | reset($column); |