|
1
|
|
|
<?php |
|
2
|
|
|
|
|
3
|
|
|
declare(strict_types=1); |
|
4
|
|
|
|
|
5
|
|
|
namespace Phpml\Classification\Linear; |
|
6
|
|
|
|
|
7
|
|
|
use Closure; |
|
8
|
|
|
use Phpml\Classification\Classifier; |
|
9
|
|
|
use Phpml\Exception\InvalidArgumentException; |
|
10
|
|
|
use Phpml\Helper\OneVsRest; |
|
11
|
|
|
use Phpml\Helper\Optimizer\GD; |
|
12
|
|
|
use Phpml\Helper\Optimizer\Optimizer; |
|
13
|
|
|
use Phpml\Helper\Optimizer\StochasticGD; |
|
14
|
|
|
use Phpml\Helper\Predictable; |
|
15
|
|
|
use Phpml\IncrementalEstimator; |
|
16
|
|
|
use Phpml\Preprocessing\Normalizer; |
|
17
|
|
|
|
|
18
|
|
|
class Perceptron implements Classifier, IncrementalEstimator |
|
19
|
|
|
{ |
|
20
|
|
|
use Predictable, OneVsRest; |
|
21
|
|
|
|
|
22
|
|
|
/** |
|
23
|
|
|
* @var Optimizer|GD|StochasticGD|null |
|
24
|
|
|
*/ |
|
25
|
|
|
protected $optimizer; |
|
26
|
|
|
|
|
27
|
|
|
/** |
|
28
|
|
|
* @var array |
|
29
|
|
|
*/ |
|
30
|
|
|
protected $labels = []; |
|
31
|
|
|
|
|
32
|
|
|
/** |
|
33
|
|
|
* @var int |
|
34
|
|
|
*/ |
|
35
|
|
|
protected $featureCount = 0; |
|
36
|
|
|
|
|
37
|
|
|
/** |
|
38
|
|
|
* @var array |
|
39
|
|
|
*/ |
|
40
|
|
|
protected $weights = []; |
|
41
|
|
|
|
|
42
|
|
|
/** |
|
43
|
|
|
* @var float |
|
44
|
|
|
*/ |
|
45
|
|
|
protected $learningRate; |
|
46
|
|
|
|
|
47
|
|
|
/** |
|
48
|
|
|
* @var int |
|
49
|
|
|
*/ |
|
50
|
|
|
protected $maxIterations; |
|
51
|
|
|
|
|
52
|
|
|
/** |
|
53
|
|
|
* @var Normalizer |
|
54
|
|
|
*/ |
|
55
|
|
|
protected $normalizer; |
|
56
|
|
|
|
|
57
|
|
|
/** |
|
58
|
|
|
* @var bool |
|
59
|
|
|
*/ |
|
60
|
|
|
protected $enableEarlyStop = true; |
|
61
|
|
|
|
|
62
|
|
|
/** |
|
63
|
|
|
* @var array |
|
64
|
|
|
*/ |
|
65
|
|
|
protected $costValues = []; |
|
66
|
|
|
|
|
67
|
|
|
/** |
|
68
|
|
|
* Initalize a perceptron classifier with given learning rate and maximum |
|
69
|
|
|
* number of iterations used while training the perceptron |
|
70
|
|
|
* |
|
71
|
|
|
* @param float $learningRate Value between 0.0(exclusive) and 1.0(inclusive) |
|
72
|
|
|
* @param int $maxIterations Must be at least 1 |
|
73
|
|
|
* |
|
74
|
|
|
* @throws InvalidArgumentException |
|
75
|
|
|
*/ |
|
76
|
|
|
public function __construct(float $learningRate = 0.001, int $maxIterations = 1000, bool $normalizeInputs = true) |
|
77
|
|
|
{ |
|
78
|
|
|
if ($learningRate <= 0.0 || $learningRate > 1.0) { |
|
79
|
|
|
throw new InvalidArgumentException('Learning rate should be a float value between 0.0(exclusive) and 1.0(inclusive)'); |
|
80
|
|
|
} |
|
81
|
|
|
|
|
82
|
|
|
if ($maxIterations <= 0) { |
|
83
|
|
|
throw new InvalidArgumentException('Maximum number of iterations must be an integer greater than 0'); |
|
84
|
|
|
} |
|
85
|
|
|
|
|
86
|
|
|
if ($normalizeInputs) { |
|
87
|
|
|
$this->normalizer = new Normalizer(Normalizer::NORM_STD); |
|
88
|
|
|
} |
|
89
|
|
|
|
|
90
|
|
|
$this->learningRate = $learningRate; |
|
91
|
|
|
$this->maxIterations = $maxIterations; |
|
92
|
|
|
} |
|
93
|
|
|
|
|
94
|
|
|
public function partialTrain(array $samples, array $targets, array $labels = []): void |
|
95
|
|
|
{ |
|
96
|
|
|
$this->trainByLabel($samples, $targets, $labels); |
|
97
|
|
|
} |
|
98
|
|
|
|
|
99
|
|
|
public function trainBinary(array $samples, array $targets, array $labels): void |
|
100
|
|
|
{ |
|
101
|
|
|
if ($this->normalizer !== null) { |
|
102
|
|
|
$this->normalizer->transform($samples); |
|
103
|
|
|
} |
|
104
|
|
|
|
|
105
|
|
|
// Set all target values to either -1 or 1 |
|
106
|
|
|
$this->labels = [ |
|
107
|
|
|
1 => $labels[0], |
|
108
|
|
|
-1 => $labels[1], |
|
109
|
|
|
]; |
|
110
|
|
|
foreach ($targets as $key => $target) { |
|
111
|
|
|
$targets[$key] = (string) $target == (string) $this->labels[1] ? 1 : -1; |
|
112
|
|
|
} |
|
113
|
|
|
|
|
114
|
|
|
// Set samples and feature count vars |
|
115
|
|
|
$this->featureCount = count($samples[0]); |
|
116
|
|
|
|
|
117
|
|
|
$this->runTraining($samples, $targets); |
|
118
|
|
|
} |
|
119
|
|
|
|
|
120
|
|
|
/** |
|
121
|
|
|
* Normally enabling early stopping for the optimization procedure may |
|
122
|
|
|
* help saving processing time while in some cases it may result in |
|
123
|
|
|
* premature convergence.<br> |
|
124
|
|
|
* |
|
125
|
|
|
* If "false" is given, the optimization procedure will always be executed |
|
126
|
|
|
* for $maxIterations times |
|
127
|
|
|
* |
|
128
|
|
|
* @return $this |
|
129
|
|
|
*/ |
|
130
|
|
|
public function setEarlyStop(bool $enable = true) |
|
131
|
|
|
{ |
|
132
|
|
|
$this->enableEarlyStop = $enable; |
|
133
|
|
|
|
|
134
|
|
|
return $this; |
|
135
|
|
|
} |
|
136
|
|
|
|
|
137
|
|
|
/** |
|
138
|
|
|
* Returns the cost values obtained during the training. |
|
139
|
|
|
*/ |
|
140
|
|
|
public function getCostValues(): array |
|
141
|
|
|
{ |
|
142
|
|
|
return $this->costValues; |
|
143
|
|
|
} |
|
144
|
|
|
|
|
145
|
|
|
protected function resetBinary(): void |
|
146
|
|
|
{ |
|
147
|
|
|
$this->labels = []; |
|
148
|
|
|
$this->optimizer = null; |
|
149
|
|
|
$this->featureCount = 0; |
|
150
|
|
|
$this->weights = []; |
|
151
|
|
|
$this->costValues = []; |
|
152
|
|
|
} |
|
153
|
|
|
|
|
154
|
|
|
/** |
|
155
|
|
|
* Trains the perceptron model with Stochastic Gradient Descent optimization |
|
156
|
|
|
* to get the correct set of weights |
|
157
|
|
|
*/ |
|
158
|
|
|
protected function runTraining(array $samples, array $targets) |
|
159
|
|
|
{ |
|
160
|
|
|
// The cost function is the sum of squares |
|
161
|
|
|
$callback = function ($weights, $sample, $target) { |
|
162
|
|
|
$this->weights = $weights; |
|
163
|
|
|
|
|
164
|
|
|
$prediction = $this->outputClass($sample); |
|
165
|
|
|
$gradient = $prediction - $target; |
|
166
|
|
|
$error = $gradient ** 2; |
|
167
|
|
|
|
|
168
|
|
|
return [$error, $gradient]; |
|
169
|
|
|
}; |
|
170
|
|
|
|
|
171
|
|
|
$this->runGradientDescent($samples, $targets, $callback); |
|
172
|
|
|
} |
|
173
|
|
|
|
|
174
|
|
|
/** |
|
175
|
|
|
* Executes a Gradient Descent algorithm for |
|
176
|
|
|
* the given cost function |
|
177
|
|
|
*/ |
|
178
|
|
|
protected function runGradientDescent(array $samples, array $targets, Closure $gradientFunc, bool $isBatch = false) |
|
179
|
|
|
{ |
|
180
|
|
|
$class = $isBatch ? GD::class : StochasticGD::class; |
|
181
|
|
|
|
|
182
|
|
|
if ($this->optimizer === null) { |
|
183
|
|
|
$this->optimizer = (new $class($this->featureCount)) |
|
184
|
|
|
->setLearningRate($this->learningRate) |
|
185
|
|
|
->setMaxIterations($this->maxIterations) |
|
186
|
|
|
->setChangeThreshold(1e-6) |
|
187
|
|
|
->setEarlyStop($this->enableEarlyStop); |
|
188
|
|
|
} |
|
189
|
|
|
|
|
190
|
|
|
$this->weights = $this->optimizer->runOptimization($samples, $targets, $gradientFunc); |
|
191
|
|
|
$this->costValues = $this->optimizer->getCostValues(); |
|
192
|
|
|
} |
|
193
|
|
|
|
|
194
|
|
|
/** |
|
195
|
|
|
* Checks if the sample should be normalized and if so, returns the |
|
196
|
|
|
* normalized sample |
|
197
|
|
|
*/ |
|
198
|
|
|
protected function checkNormalizedSample(array $sample): array |
|
199
|
|
|
{ |
|
200
|
|
|
if ($this->normalizer !== null) { |
|
201
|
|
|
$samples = [$sample]; |
|
202
|
|
|
$this->normalizer->transform($samples); |
|
203
|
|
|
$sample = $samples[0]; |
|
204
|
|
|
} |
|
205
|
|
|
|
|
206
|
|
|
return $sample; |
|
207
|
|
|
} |
|
208
|
|
|
|
|
209
|
|
|
/** |
|
210
|
|
|
* Calculates net output of the network as a float value for the given input |
|
211
|
|
|
* |
|
212
|
|
|
* @return int|float |
|
213
|
|
|
*/ |
|
214
|
|
|
protected function output(array $sample) |
|
215
|
|
|
{ |
|
216
|
|
|
$sum = 0; |
|
217
|
|
|
foreach ($this->weights as $index => $w) { |
|
218
|
|
|
if ($index == 0) { |
|
219
|
|
|
$sum += $w; |
|
220
|
|
|
} else { |
|
221
|
|
|
$sum += $w * $sample[$index - 1]; |
|
222
|
|
|
} |
|
223
|
|
|
} |
|
224
|
|
|
|
|
225
|
|
|
return $sum; |
|
226
|
|
|
} |
|
227
|
|
|
|
|
228
|
|
|
/** |
|
229
|
|
|
* Returns the class value (either -1 or 1) for the given input |
|
230
|
|
|
*/ |
|
231
|
|
|
protected function outputClass(array $sample): int |
|
232
|
|
|
{ |
|
233
|
|
|
return $this->output($sample) > 0 ? 1 : -1; |
|
234
|
|
|
} |
|
235
|
|
|
|
|
236
|
|
|
/** |
|
237
|
|
|
* Returns the probability of the sample of belonging to the given label. |
|
238
|
|
|
* |
|
239
|
|
|
* The probability is simply taken as the distance of the sample |
|
240
|
|
|
* to the decision plane. |
|
241
|
|
|
* |
|
242
|
|
|
* @param mixed $label |
|
243
|
|
|
*/ |
|
244
|
|
|
protected function predictProbability(array $sample, $label): float |
|
245
|
|
|
{ |
|
246
|
|
|
$predicted = $this->predictSampleBinary($sample); |
|
247
|
|
|
|
|
248
|
|
|
if ((string) $predicted == (string) $label) { |
|
249
|
|
|
$sample = $this->checkNormalizedSample($sample); |
|
250
|
|
|
|
|
251
|
|
|
return (float) abs($this->output($sample)); |
|
252
|
|
|
} |
|
253
|
|
|
|
|
254
|
|
|
return 0.0; |
|
255
|
|
|
} |
|
256
|
|
|
|
|
257
|
|
|
/** |
|
258
|
|
|
* @return mixed |
|
259
|
|
|
*/ |
|
260
|
|
|
protected function predictSampleBinary(array $sample) |
|
261
|
|
|
{ |
|
262
|
|
|
$sample = $this->checkNormalizedSample($sample); |
|
263
|
|
|
|
|
264
|
|
|
$predictedClass = $this->outputClass($sample); |
|
265
|
|
|
|
|
266
|
|
|
return $this->labels[$predictedClass]; |
|
267
|
|
|
} |
|
268
|
|
|
} |
|
269
|
|
|
|