|
1
|
|
|
<?php |
|
2
|
|
|
|
|
3
|
|
|
declare(strict_types=1); |
|
4
|
|
|
|
|
5
|
|
|
namespace Phpml\Helper\Optimizer; |
|
6
|
|
|
|
|
7
|
|
|
use Closure; |
|
8
|
|
|
use Phpml\Exception\InvalidArgumentException; |
|
9
|
|
|
|
|
10
|
|
|
/** |
|
11
|
|
|
* Stochastic Gradient Descent optimization method |
|
12
|
|
|
* to find a solution for the equation A.ϴ = y where |
|
13
|
|
|
* A (samples) and y (targets) are known and ϴ is unknown. |
|
14
|
|
|
*/ |
|
15
|
|
|
class StochasticGD extends Optimizer |
|
16
|
|
|
{ |
|
17
|
|
|
/** |
|
18
|
|
|
* A (samples) |
|
19
|
|
|
* |
|
20
|
|
|
* @var array |
|
21
|
|
|
*/ |
|
22
|
|
|
protected $samples = []; |
|
23
|
|
|
|
|
24
|
|
|
/** |
|
25
|
|
|
* y (targets) |
|
26
|
|
|
* |
|
27
|
|
|
* @var array |
|
28
|
|
|
*/ |
|
29
|
|
|
protected $targets = []; |
|
30
|
|
|
|
|
31
|
|
|
/** |
|
32
|
|
|
* Callback function to get the gradient and cost value |
|
33
|
|
|
* for a specific set of theta (ϴ) and a pair of sample & target |
|
34
|
|
|
* |
|
35
|
|
|
* @var \Closure|null |
|
36
|
|
|
*/ |
|
37
|
|
|
protected $gradientCb = null; |
|
38
|
|
|
|
|
39
|
|
|
/** |
|
40
|
|
|
* Maximum number of iterations used to train the model |
|
41
|
|
|
* |
|
42
|
|
|
* @var int |
|
43
|
|
|
*/ |
|
44
|
|
|
protected $maxIterations = 1000; |
|
45
|
|
|
|
|
46
|
|
|
/** |
|
47
|
|
|
* Learning rate is used to control the speed of the optimization.<br> |
|
48
|
|
|
* |
|
49
|
|
|
* Larger values of lr may overshoot the optimum or even cause divergence |
|
50
|
|
|
* while small values slows down the convergence and increases the time |
|
51
|
|
|
* required for the training |
|
52
|
|
|
* |
|
53
|
|
|
* @var float |
|
54
|
|
|
*/ |
|
55
|
|
|
protected $learningRate = 0.001; |
|
56
|
|
|
|
|
57
|
|
|
/** |
|
58
|
|
|
* Minimum amount of change in the weights and error values |
|
59
|
|
|
* between iterations that needs to be obtained to continue the training |
|
60
|
|
|
* |
|
61
|
|
|
* @var float |
|
62
|
|
|
*/ |
|
63
|
|
|
protected $threshold = 1e-4; |
|
64
|
|
|
|
|
65
|
|
|
/** |
|
66
|
|
|
* Enable/Disable early stopping by checking the weight & cost values |
|
67
|
|
|
* to see whether they changed large enough to continue the optimization |
|
68
|
|
|
* |
|
69
|
|
|
* @var bool |
|
70
|
|
|
*/ |
|
71
|
|
|
protected $enableEarlyStop = true; |
|
72
|
|
|
|
|
73
|
|
|
/** |
|
74
|
|
|
* List of values obtained by evaluating the cost function at each iteration |
|
75
|
|
|
* of the algorithm |
|
76
|
|
|
* |
|
77
|
|
|
* @var array |
|
78
|
|
|
*/ |
|
79
|
|
|
protected $costValues = []; |
|
80
|
|
|
|
|
81
|
|
|
/** |
|
82
|
|
|
* Initializes the SGD optimizer for the given number of dimensions |
|
83
|
|
|
*/ |
|
84
|
|
|
public function __construct(int $dimensions) |
|
85
|
|
|
{ |
|
86
|
|
|
// Add one more dimension for the bias |
|
87
|
|
|
parent::__construct($dimensions + 1); |
|
88
|
|
|
|
|
89
|
|
|
$this->dimensions = $dimensions; |
|
90
|
|
|
} |
|
91
|
|
|
|
|
92
|
|
|
public function setInitialTheta(array $theta) |
|
93
|
|
|
{ |
|
94
|
|
|
if (count($theta) != $this->dimensions + 1) { |
|
95
|
|
|
throw new InvalidArgumentException(sprintf('Number of values in the weights array should be %s', $this->dimensions + 1)); |
|
96
|
|
|
} |
|
97
|
|
|
|
|
98
|
|
|
$this->theta = $theta; |
|
99
|
|
|
|
|
100
|
|
|
return $this; |
|
101
|
|
|
} |
|
102
|
|
|
|
|
103
|
|
|
/** |
|
104
|
|
|
* Sets minimum value for the change in the theta values |
|
105
|
|
|
* between iterations to continue the iterations.<br> |
|
106
|
|
|
* |
|
107
|
|
|
* If change in the theta is less than given value then the |
|
108
|
|
|
* algorithm will stop training |
|
109
|
|
|
* |
|
110
|
|
|
* @return $this |
|
111
|
|
|
*/ |
|
112
|
|
|
public function setChangeThreshold(float $threshold = 1e-5) |
|
113
|
|
|
{ |
|
114
|
|
|
$this->threshold = $threshold; |
|
115
|
|
|
|
|
116
|
|
|
return $this; |
|
117
|
|
|
} |
|
118
|
|
|
|
|
119
|
|
|
/** |
|
120
|
|
|
* Enable/Disable early stopping by checking at each iteration |
|
121
|
|
|
* whether changes in theta or cost value are not large enough |
|
122
|
|
|
* |
|
123
|
|
|
* @return $this |
|
124
|
|
|
*/ |
|
125
|
|
|
public function setEarlyStop(bool $enable = true) |
|
126
|
|
|
{ |
|
127
|
|
|
$this->enableEarlyStop = $enable; |
|
128
|
|
|
|
|
129
|
|
|
return $this; |
|
130
|
|
|
} |
|
131
|
|
|
|
|
132
|
|
|
/** |
|
133
|
|
|
* @return $this |
|
134
|
|
|
*/ |
|
135
|
|
|
public function setLearningRate(float $learningRate) |
|
136
|
|
|
{ |
|
137
|
|
|
$this->learningRate = $learningRate; |
|
138
|
|
|
|
|
139
|
|
|
return $this; |
|
140
|
|
|
} |
|
141
|
|
|
|
|
142
|
|
|
/** |
|
143
|
|
|
* @return $this |
|
144
|
|
|
*/ |
|
145
|
|
|
public function setMaxIterations(int $maxIterations) |
|
146
|
|
|
{ |
|
147
|
|
|
$this->maxIterations = $maxIterations; |
|
148
|
|
|
|
|
149
|
|
|
return $this; |
|
150
|
|
|
} |
|
151
|
|
|
|
|
152
|
|
|
/** |
|
153
|
|
|
* Optimization procedure finds the unknow variables for the equation A.ϴ = y |
|
154
|
|
|
* for the given samples (A) and targets (y).<br> |
|
155
|
|
|
* |
|
156
|
|
|
* The cost function to minimize and the gradient of the function are to be |
|
157
|
|
|
* handled by the callback function provided as the third parameter of the method. |
|
158
|
|
|
*/ |
|
159
|
|
|
public function runOptimization(array $samples, array $targets, Closure $gradientCb): ?array |
|
160
|
|
|
{ |
|
161
|
|
|
$this->samples = $samples; |
|
162
|
|
|
$this->targets = $targets; |
|
163
|
|
|
$this->gradientCb = $gradientCb; |
|
164
|
|
|
|
|
165
|
|
|
$currIter = 0; |
|
166
|
|
|
$bestTheta = null; |
|
167
|
|
|
$bestScore = 0.0; |
|
168
|
|
|
$this->costValues = []; |
|
169
|
|
|
|
|
170
|
|
|
while ($this->maxIterations > $currIter++) { |
|
171
|
|
|
$theta = $this->theta; |
|
172
|
|
|
|
|
173
|
|
|
// Update the guess |
|
174
|
|
|
$cost = $this->updateTheta(); |
|
175
|
|
|
|
|
176
|
|
|
// Save the best theta in the "pocket" so that |
|
177
|
|
|
// any future set of theta worse than this will be disregarded |
|
178
|
|
|
if ($bestTheta == null || $cost <= $bestScore) { |
|
179
|
|
|
$bestTheta = $theta; |
|
180
|
|
|
$bestScore = $cost; |
|
181
|
|
|
} |
|
182
|
|
|
|
|
183
|
|
|
// Add the cost value for this iteration to the list |
|
184
|
|
|
$this->costValues[] = $cost; |
|
185
|
|
|
|
|
186
|
|
|
// Check for early stop |
|
187
|
|
|
if ($this->enableEarlyStop && $this->earlyStop($theta)) { |
|
188
|
|
|
break; |
|
189
|
|
|
} |
|
190
|
|
|
} |
|
191
|
|
|
|
|
192
|
|
|
$this->clear(); |
|
193
|
|
|
|
|
194
|
|
|
// Solution in the pocket is better than or equal to the last state |
|
195
|
|
|
// so, we use this solution |
|
196
|
|
|
return $this->theta = (array) $bestTheta; |
|
197
|
|
|
} |
|
198
|
|
|
|
|
199
|
|
|
/** |
|
200
|
|
|
* Returns the list of cost values for each iteration executed in |
|
201
|
|
|
* last run of the optimization |
|
202
|
|
|
*/ |
|
203
|
|
|
public function getCostValues(): array |
|
204
|
|
|
{ |
|
205
|
|
|
return $this->costValues; |
|
206
|
|
|
} |
|
207
|
|
|
|
|
208
|
|
|
protected function updateTheta(): float |
|
209
|
|
|
{ |
|
210
|
|
|
$jValue = 0.0; |
|
211
|
|
|
$theta = $this->theta; |
|
212
|
|
|
|
|
213
|
|
|
foreach ($this->samples as $index => $sample) { |
|
214
|
|
|
$target = $this->targets[$index]; |
|
215
|
|
|
|
|
216
|
|
|
$result = ($this->gradientCb)($theta, $sample, $target); |
|
217
|
|
|
|
|
218
|
|
|
[$error, $gradient, $penalty] = array_pad($result, 3, 0); |
|
|
|
|
|
|
219
|
|
|
|
|
220
|
|
|
// Update bias |
|
221
|
|
|
$this->theta[0] -= $this->learningRate * $gradient; |
|
222
|
|
|
|
|
223
|
|
|
// Update other values |
|
224
|
|
|
for ($i = 1; $i <= $this->dimensions; ++$i) { |
|
225
|
|
|
$this->theta[$i] -= $this->learningRate * |
|
226
|
|
|
($gradient * $sample[$i - 1] + $penalty * $this->theta[$i]); |
|
227
|
|
|
} |
|
228
|
|
|
|
|
229
|
|
|
// Sum error rate |
|
230
|
|
|
$jValue += $error; |
|
231
|
|
|
} |
|
232
|
|
|
|
|
233
|
|
|
return $jValue / count($this->samples); |
|
234
|
|
|
} |
|
235
|
|
|
|
|
236
|
|
|
/** |
|
237
|
|
|
* Checks if the optimization is not effective enough and can be stopped |
|
238
|
|
|
* in case large enough changes in the solution do not happen |
|
239
|
|
|
*/ |
|
240
|
|
|
protected function earlyStop(array $oldTheta): bool |
|
241
|
|
|
{ |
|
242
|
|
|
// Check for early stop: No change larger than threshold (default 1e-5) |
|
243
|
|
|
$diff = array_map( |
|
244
|
|
|
function ($w1, $w2) { |
|
245
|
|
|
return abs($w1 - $w2) > $this->threshold ? 1 : 0; |
|
246
|
|
|
}, |
|
247
|
|
|
$oldTheta, |
|
248
|
|
|
$this->theta |
|
249
|
|
|
); |
|
250
|
|
|
|
|
251
|
|
|
if (array_sum($diff) == 0) { |
|
252
|
|
|
return true; |
|
253
|
|
|
} |
|
254
|
|
|
|
|
255
|
|
|
// Check if the last two cost values are almost the same |
|
256
|
|
|
$costs = array_slice($this->costValues, -2); |
|
257
|
|
|
if (count($costs) == 2 && abs($costs[1] - $costs[0]) < $this->threshold) { |
|
258
|
|
|
return true; |
|
259
|
|
|
} |
|
260
|
|
|
|
|
261
|
|
|
return false; |
|
262
|
|
|
} |
|
263
|
|
|
|
|
264
|
|
|
/** |
|
265
|
|
|
* Clears the optimizer internal vars after the optimization process. |
|
266
|
|
|
*/ |
|
267
|
|
|
protected function clear(): void |
|
268
|
|
|
{ |
|
269
|
|
|
$this->samples = []; |
|
270
|
|
|
$this->targets = []; |
|
271
|
|
|
$this->gradientCb = null; |
|
272
|
|
|
} |
|
273
|
|
|
} |
|
274
|
|
|
|
This check marks access to variables or properties that have not been declared yet. While PHP has no explicit notion of declaring a variable, accessing it before a value is assigned to it is most likely a bug.