@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\Classification\Linear; |
6 | 6 | |
@@ -64,7 +64,7 @@ discard block |
||
64 | 64 | protected function runTraining(array $samples, array $targets) |
65 | 65 | { |
66 | 66 | // The cost function is the sum of squares |
67 | - $callback = function ($weights, $sample, $target) { |
|
67 | + $callback = function($weights, $sample, $target) { |
|
68 | 68 | $this->weights = $weights; |
69 | 69 | |
70 | 70 | $output = $this->output($sample); |
@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\Classification\Linear; |
6 | 6 | |
@@ -193,7 +193,7 @@ discard block |
||
193 | 193 | * The gradient of the cost function to be used with gradient descent: |
194 | 194 | * ∇J(x) = -(y - h(x)) = (h(x) - y) |
195 | 195 | */ |
196 | - $callback = function ($weights, $sample, $y) use ($penalty) { |
|
196 | + $callback = function($weights, $sample, $y) use ($penalty) { |
|
197 | 197 | $this->weights = $weights; |
198 | 198 | $hX = $this->output($sample); |
199 | 199 | |
@@ -224,7 +224,7 @@ discard block |
||
224 | 224 | * The gradient of the cost function: |
225 | 225 | * ∇J(x) = -(h(x) - y) . h(x) . (1 - h(x)) |
226 | 226 | */ |
227 | - $callback = function ($weights, $sample, $y) use ($penalty) { |
|
227 | + $callback = function($weights, $sample, $y) use ($penalty) { |
|
228 | 228 | $this->weights = $weights; |
229 | 229 | $hX = $this->output($sample); |
230 | 230 |
@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\DimensionReduction; |
6 | 6 | |
@@ -146,7 +146,7 @@ discard block |
||
146 | 146 | |
147 | 147 | // Calculate overall mean of the dataset for each column |
148 | 148 | $numElements = array_sum($counts); |
149 | - $map = function ($el) use ($numElements) { |
|
149 | + $map = function($el) use ($numElements) { |
|
150 | 150 | return $el / $numElements; |
151 | 151 | }; |
152 | 152 | $this->overallMean = array_map($map, $overallMean); |
@@ -1,6 +1,6 @@ |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\DimensionReduction; |
6 | 6 |
@@ -1,6 +1,6 @@ |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\Math\Statistic; |
6 | 6 |
@@ -1,6 +1,6 @@ |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\NeuralNetwork\ActivationFunction; |
6 | 6 |
@@ -1,6 +1,6 @@ |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\Math; |
6 | 6 |
@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\SupportVectorMachine; |
6 | 6 | |
@@ -236,7 +236,7 @@ discard block |
||
236 | 236 | ); |
237 | 237 | } |
238 | 238 | |
239 | - private function ensureDirectorySeparator(string &$path) |
|
239 | + private function ensureDirectorySeparator(string & $path) |
|
240 | 240 | { |
241 | 241 | if (substr($path, -1) !== DIRECTORY_SEPARATOR) { |
242 | 242 | $path .= DIRECTORY_SEPARATOR; |
@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\FeatureExtraction; |
6 | 6 | |
@@ -85,7 +85,7 @@ discard block |
||
85 | 85 | } |
86 | 86 | } |
87 | 87 | |
88 | - private function transformSample(string &$sample) |
|
88 | + private function transformSample(string & $sample) |
|
89 | 89 | { |
90 | 90 | $counts = []; |
91 | 91 | $tokens = $this->tokenizer->tokenize($sample); |