|
1
|
|
|
<?php |
|
2
|
|
|
|
|
3
|
|
|
declare(strict_types=1); |
|
4
|
|
|
|
|
5
|
|
|
namespace Phpml\NeuralNetwork; |
|
6
|
|
|
|
|
7
|
|
|
use Phpml\Exception\BadNeuralNetworkStructureException; |
|
8
|
|
|
use Phpml\Exception\InvalidArgumentException; |
|
9
|
|
|
use Phpml\NeuralNetwork\Node\Neuron; |
|
10
|
|
|
|
|
11
|
|
|
class Layer |
|
12
|
|
|
{ |
|
13
|
|
|
/** |
|
14
|
|
|
* @var Node[] |
|
15
|
|
|
*/ |
|
16
|
|
|
private $nodes = []; |
|
17
|
|
|
|
|
18
|
|
|
/** |
|
19
|
|
|
* @throws InvalidArgumentException |
|
20
|
|
|
*/ |
|
21
|
|
|
public function __construct(int $nodesNumber = 0, string $nodeClass = Neuron::class, ?ActivationFunction $activationFunction = null) |
|
22
|
|
|
{ |
|
23
|
|
|
if (!in_array(Node::class, class_implements($nodeClass), true)) { |
|
24
|
|
|
throw new InvalidArgumentException('Layer node class must implement Node interface'); |
|
25
|
|
|
} |
|
26
|
|
|
|
|
27
|
|
|
for ($i = 0; $i < $nodesNumber; ++$i) { |
|
28
|
|
|
$this->nodes[] = $this->createNode($nodeClass, $activationFunction); |
|
29
|
|
|
} |
|
30
|
|
|
} |
|
31
|
|
|
|
|
32
|
|
|
public function addNode(Node $node): void |
|
33
|
|
|
{ |
|
34
|
|
|
$this->nodes[] = $node; |
|
35
|
|
|
} |
|
36
|
|
|
|
|
37
|
|
|
/** |
|
38
|
|
|
* @return Node[] |
|
39
|
|
|
*/ |
|
40
|
|
|
public function getNodes(): array |
|
41
|
|
|
{ |
|
42
|
|
|
return $this->nodes; |
|
43
|
|
|
} |
|
44
|
|
|
|
|
45
|
|
|
public function getTrainedCharacteristics(): array |
|
46
|
|
|
{ |
|
47
|
|
|
$result = []; |
|
48
|
|
|
foreach ($this->nodes as $node) { |
|
49
|
|
|
if ($node instanceof Neuron) { |
|
50
|
|
|
$result[] = $node->getTrainedCharacteristics(); |
|
51
|
|
|
} |
|
52
|
|
|
} |
|
53
|
|
|
|
|
54
|
|
|
return $result; |
|
55
|
|
|
} |
|
56
|
|
|
|
|
57
|
|
|
public function setTrainedCharacteristics(array $characteristics): void |
|
58
|
|
|
{ |
|
59
|
|
|
// iterate over the node instances |
|
60
|
|
|
$iNode = -1; |
|
61
|
|
|
for ($i = 0; $i < count($this->nodes); $i++) { |
|
|
|
|
|
|
62
|
|
|
$node = $this->nodes[$i]; |
|
63
|
|
|
if ($node instanceof Neuron) { |
|
64
|
|
|
$iNode ++; |
|
65
|
|
|
|
|
66
|
|
|
if (count($characteristics) < $iNode + 1) { |
|
67
|
|
|
throw new BadNeuralNetworkStructureException(); |
|
68
|
|
|
} |
|
69
|
|
|
|
|
70
|
|
|
$node->setTrainedCharacteristics($characteristics[$iNode]); |
|
71
|
|
|
} |
|
72
|
|
|
} |
|
73
|
|
|
} |
|
74
|
|
|
|
|
75
|
|
|
private function createNode(string $nodeClass, ?ActivationFunction $activationFunction = null): Node |
|
76
|
|
|
{ |
|
77
|
|
|
if ($nodeClass === Neuron::class) { |
|
78
|
|
|
return new Neuron($activationFunction); |
|
79
|
|
|
} |
|
80
|
|
|
|
|
81
|
|
|
return new $nodeClass(); |
|
82
|
|
|
} |
|
83
|
|
|
} |
|
84
|
|
|
|
If the size of the collection does not change during the iteration, it is generally a good practice to compute it beforehand, and not on each iteration: