@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\Classification\Linear; |
6 | 6 | |
@@ -64,7 +64,7 @@ discard block |
||
64 | 64 | protected function runTraining(array $samples, array $targets) |
65 | 65 | { |
66 | 66 | // The cost function is the sum of squares |
67 | - $callback = function ($weights, $sample, $target) { |
|
67 | + $callback = function($weights, $sample, $target) { |
|
68 | 68 | $this->weights = $weights; |
69 | 69 | |
70 | 70 | $output = $this->output($sample); |
@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\Classification\Linear; |
6 | 6 | |
@@ -193,7 +193,7 @@ discard block |
||
193 | 193 | * The gradient of the cost function to be used with gradient descent: |
194 | 194 | * ∇J(x) = -(y - h(x)) = (h(x) - y) |
195 | 195 | */ |
196 | - $callback = function ($weights, $sample, $y) use ($penalty) { |
|
196 | + $callback = function($weights, $sample, $y) use ($penalty) { |
|
197 | 197 | $this->weights = $weights; |
198 | 198 | $hX = $this->output($sample); |
199 | 199 | |
@@ -224,7 +224,7 @@ discard block |
||
224 | 224 | * The gradient of the cost function: |
225 | 225 | * ∇J(x) = -(h(x) - y) . h(x) . (1 - h(x)) |
226 | 226 | */ |
227 | - $callback = function ($weights, $sample, $y) use ($penalty) { |
|
227 | + $callback = function($weights, $sample, $y) use ($penalty) { |
|
228 | 228 | $this->weights = $weights; |
229 | 229 | $hX = $this->output($sample); |
230 | 230 |
@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\DimensionReduction; |
6 | 6 | |
@@ -162,20 +162,20 @@ discard block |
||
162 | 162 | switch ($this->kernel) { |
163 | 163 | case self::KERNEL_LINEAR: |
164 | 164 | // k(x,y) = xT.y |
165 | - return function ($x, $y) { |
|
165 | + return function($x, $y) { |
|
166 | 166 | return Matrix::dot($x, $y)[0]; |
167 | 167 | }; |
168 | 168 | case self::KERNEL_RBF: |
169 | 169 | // k(x,y)=exp(-γ.|x-y|) where |..| is Euclidean distance |
170 | 170 | $dist = new Euclidean(); |
171 | 171 | |
172 | - return function ($x, $y) use ($dist) { |
|
172 | + return function($x, $y) use ($dist) { |
|
173 | 173 | return exp(-$this->gamma * $dist->sqDistance($x, $y)); |
174 | 174 | }; |
175 | 175 | |
176 | 176 | case self::KERNEL_SIGMOID: |
177 | 177 | // k(x,y)=tanh(γ.xT.y+c0) where c0=1 |
178 | - return function ($x, $y) { |
|
178 | + return function($x, $y) { |
|
179 | 179 | $res = Matrix::dot($x, $y)[0] + 1.0; |
180 | 180 | |
181 | 181 | return tanh($this->gamma * $res); |
@@ -185,7 +185,7 @@ discard block |
||
185 | 185 | // k(x,y)=exp(-γ.|x-y|) where |..| is Manhattan distance |
186 | 186 | $dist = new Manhattan(); |
187 | 187 | |
188 | - return function ($x, $y) use ($dist) { |
|
188 | + return function($x, $y) use ($dist) { |
|
189 | 189 | return exp(-$this->gamma * $dist->distance($x, $y)); |
190 | 190 | }; |
191 | 191 | |
@@ -219,7 +219,7 @@ discard block |
||
219 | 219 | protected function projectSample(array $pairs) |
220 | 220 | { |
221 | 221 | // Normalize eigenvectors by eig = eigVectors / eigValues |
222 | - $func = function ($eigVal, $eigVect) { |
|
222 | + $func = function($eigVal, $eigVect) { |
|
223 | 223 | $m = new Matrix($eigVect, false); |
224 | 224 | $a = $m->divideByScalar($eigVal)->toArray(); |
225 | 225 |
@@ -1,6 +1,6 @@ discard block |
||
1 | 1 | <?php |
2 | 2 | |
3 | -declare(strict_types=1); |
|
3 | +declare(strict_types = 1); |
|
4 | 4 | |
5 | 5 | namespace Phpml\DimensionReduction; |
6 | 6 | |
@@ -146,7 +146,7 @@ discard block |
||
146 | 146 | |
147 | 147 | // Calculate overall mean of the dataset for each column |
148 | 148 | $numElements = array_sum($counts); |
149 | - $map = function ($el) use ($numElements) { |
|
149 | + $map = function($el) use ($numElements) { |
|
150 | 150 | return $el / $numElements; |
151 | 151 | }; |
152 | 152 | $this->overallMean = array_map($map, $overallMean); |
@@ -65,24 +65,24 @@ |
||
65 | 65 | private $V = []; |
66 | 66 | |
67 | 67 | /** |
68 | - * Array for internal storage of nonsymmetric Hessenberg form. |
|
69 | - * |
|
70 | - * @var array |
|
71 | - */ |
|
68 | + * Array for internal storage of nonsymmetric Hessenberg form. |
|
69 | + * |
|
70 | + * @var array |
|
71 | + */ |
|
72 | 72 | private $H = []; |
73 | 73 | |
74 | 74 | /** |
75 | - * Working storage for nonsymmetric algorithm. |
|
76 | - * |
|
77 | - * @var array |
|
78 | - */ |
|
75 | + * Working storage for nonsymmetric algorithm. |
|
76 | + * |
|
77 | + * @var array |
|
78 | + */ |
|
79 | 79 | private $ort; |
80 | 80 | |
81 | 81 | /** |
82 | - * Used for complex scalar division. |
|
83 | - * |
|
84 | - * @var float |
|
85 | - */ |
|
82 | + * Used for complex scalar division. |
|
83 | + * |
|
84 | + * @var float |
|
85 | + */ |
|
86 | 86 | private $cdivr; |
87 | 87 | private $cdivi; |
88 | 88 |