1
|
|
|
<?php |
2
|
|
|
|
3
|
|
|
declare(strict_types=1); |
4
|
|
|
|
5
|
|
|
namespace Phpml\Classification\Linear; |
6
|
|
|
|
7
|
|
|
use Closure; |
8
|
|
|
use Exception; |
9
|
|
|
use Phpml\Helper\Optimizer\ConjugateGradient; |
10
|
|
|
|
11
|
|
|
class LogisticRegression extends Adaline |
12
|
|
|
{ |
13
|
|
|
/** |
14
|
|
|
* Batch training: Gradient descent algorithm (default) |
15
|
|
|
*/ |
16
|
|
|
public const BATCH_TRAINING = 1; |
17
|
|
|
|
18
|
|
|
/** |
19
|
|
|
* Online training: Stochastic gradient descent learning |
20
|
|
|
*/ |
21
|
|
|
public const ONLINE_TRAINING = 2; |
22
|
|
|
|
23
|
|
|
/** |
24
|
|
|
* Conjugate Batch: Conjugate Gradient algorithm |
25
|
|
|
*/ |
26
|
|
|
public const CONJUGATE_GRAD_TRAINING = 3; |
27
|
|
|
|
28
|
|
|
/** |
29
|
|
|
* Cost function to optimize: 'log' and 'sse' are supported <br> |
30
|
|
|
* - 'log' : log likelihood <br> |
31
|
|
|
* - 'sse' : sum of squared errors <br> |
32
|
|
|
* |
33
|
|
|
* @var string |
34
|
|
|
*/ |
35
|
|
|
protected $costFunction = 'log'; |
36
|
|
|
|
37
|
|
|
/** |
38
|
|
|
* Regularization term: only 'L2' is supported |
39
|
|
|
* |
40
|
|
|
* @var string |
41
|
|
|
*/ |
42
|
|
|
protected $penalty = 'L2'; |
43
|
|
|
|
44
|
|
|
/** |
45
|
|
|
* Lambda (λ) parameter of regularization term. If λ is set to 0, then |
46
|
|
|
* regularization term is cancelled. |
47
|
|
|
* |
48
|
|
|
* @var float |
49
|
|
|
*/ |
50
|
|
|
protected $lambda = 0.5; |
51
|
|
|
|
52
|
|
|
/** |
53
|
|
|
* Initalize a Logistic Regression classifier with maximum number of iterations |
54
|
|
|
* and learning rule to be applied <br> |
55
|
|
|
* |
56
|
|
|
* Maximum number of iterations can be an integer value greater than 0 <br> |
57
|
|
|
* If normalizeInputs is set to true, then every input given to the algorithm will be standardized |
58
|
|
|
* by use of standard deviation and mean calculation <br> |
59
|
|
|
* |
60
|
|
|
* Cost function can be 'log' for log-likelihood and 'sse' for sum of squared errors <br> |
61
|
|
|
* |
62
|
|
|
* Penalty (Regularization term) can be 'L2' or empty string to cancel penalty term |
63
|
|
|
* |
64
|
|
|
* @throws \Exception |
65
|
|
|
*/ |
66
|
|
|
public function __construct( |
67
|
|
|
int $maxIterations = 500, |
68
|
|
|
bool $normalizeInputs = true, |
69
|
|
|
int $trainingType = self::CONJUGATE_GRAD_TRAINING, |
70
|
|
|
string $cost = 'log', |
71
|
|
|
string $penalty = 'L2' |
72
|
|
|
) { |
73
|
|
|
$trainingTypes = range(self::BATCH_TRAINING, self::CONJUGATE_GRAD_TRAINING); |
74
|
|
|
if (!in_array($trainingType, $trainingTypes)) { |
75
|
|
|
throw new Exception('Logistic regression can only be trained with '. |
76
|
|
|
'batch (gradient descent), online (stochastic gradient descent) '. |
77
|
|
|
'or conjugate batch (conjugate gradients) algorithms'); |
78
|
|
|
} |
79
|
|
|
|
80
|
|
|
if (!in_array($cost, ['log', 'sse'])) { |
81
|
|
|
throw new Exception("Logistic regression cost function can be one of the following: \n". |
82
|
|
|
"'log' for log-likelihood and 'sse' for sum of squared errors"); |
83
|
|
|
} |
84
|
|
|
|
85
|
|
|
if ($penalty != '' && strtoupper($penalty) !== 'L2') { |
86
|
|
|
throw new Exception("Logistic regression supports only 'L2' regularization"); |
87
|
|
|
} |
88
|
|
|
|
89
|
|
|
$this->learningRate = 0.001; |
90
|
|
|
|
91
|
|
|
parent::__construct($this->learningRate, $maxIterations, $normalizeInputs); |
92
|
|
|
|
93
|
|
|
$this->trainingType = $trainingType; |
|
|
|
|
94
|
|
|
$this->costFunction = $cost; |
95
|
|
|
$this->penalty = $penalty; |
96
|
|
|
} |
97
|
|
|
|
98
|
|
|
/** |
99
|
|
|
* Sets the learning rate if gradient descent algorithm is |
100
|
|
|
* selected for training |
101
|
|
|
*/ |
102
|
|
|
public function setLearningRate(float $learningRate): void |
103
|
|
|
{ |
104
|
|
|
$this->learningRate = $learningRate; |
105
|
|
|
} |
106
|
|
|
|
107
|
|
|
/** |
108
|
|
|
* Lambda (λ) parameter of regularization term. If 0 is given, |
109
|
|
|
* then the regularization term is cancelled |
110
|
|
|
*/ |
111
|
|
|
public function setLambda(float $lambda): void |
112
|
|
|
{ |
113
|
|
|
$this->lambda = $lambda; |
114
|
|
|
} |
115
|
|
|
|
116
|
|
|
/** |
117
|
|
|
* Adapts the weights with respect to given samples and targets |
118
|
|
|
* by use of selected solver |
119
|
|
|
* |
120
|
|
|
* @throws \Exception |
121
|
|
|
*/ |
122
|
|
|
protected function runTraining(array $samples, array $targets) |
123
|
|
|
{ |
124
|
|
|
$callback = $this->getCostFunction(); |
125
|
|
|
|
126
|
|
|
switch ($this->trainingType) { |
127
|
|
|
case self::BATCH_TRAINING: |
128
|
|
|
return $this->runGradientDescent($samples, $targets, $callback, true); |
129
|
|
|
|
130
|
|
|
case self::ONLINE_TRAINING: |
131
|
|
|
return $this->runGradientDescent($samples, $targets, $callback, false); |
132
|
|
|
|
133
|
|
|
case self::CONJUGATE_GRAD_TRAINING: |
134
|
|
|
return $this->runConjugateGradient($samples, $targets, $callback); |
135
|
|
|
|
136
|
|
|
default: |
137
|
|
|
throw new Exception('Logistic regression has invalid training type: %s.', $this->trainingType); |
138
|
|
|
} |
139
|
|
|
} |
140
|
|
|
|
141
|
|
|
/** |
142
|
|
|
* Executes Conjugate Gradient method to optimize the weights of the LogReg model |
143
|
|
|
*/ |
144
|
|
|
protected function runConjugateGradient(array $samples, array $targets, Closure $gradientFunc): void |
145
|
|
|
{ |
146
|
|
|
if (empty($this->optimizer)) { |
147
|
|
|
$this->optimizer = (new ConjugateGradient($this->featureCount)) |
148
|
|
|
->setMaxIterations($this->maxIterations); |
149
|
|
|
} |
150
|
|
|
|
151
|
|
|
$this->weights = $this->optimizer->runOptimization($samples, $targets, $gradientFunc); |
152
|
|
|
$this->costValues = $this->optimizer->getCostValues(); |
153
|
|
|
} |
154
|
|
|
|
155
|
|
|
/** |
156
|
|
|
* Returns the appropriate callback function for the selected cost function |
157
|
|
|
* |
158
|
|
|
* @throws \Exception |
159
|
|
|
*/ |
160
|
|
|
protected function getCostFunction(): Closure |
161
|
|
|
{ |
162
|
|
|
$penalty = 0; |
163
|
|
|
if ($this->penalty == 'L2') { |
164
|
|
|
$penalty = $this->lambda; |
165
|
|
|
} |
166
|
|
|
|
167
|
|
|
switch ($this->costFunction) { |
168
|
|
|
case 'log': |
169
|
|
|
/* |
170
|
|
|
* Negative of Log-likelihood cost function to be minimized: |
171
|
|
|
* J(x) = ∑( - y . log(h(x)) - (1 - y) . log(1 - h(x))) |
172
|
|
|
* |
173
|
|
|
* If regularization term is given, then it will be added to the cost: |
174
|
|
|
* for L2 : J(x) = J(x) + λ/m . w |
175
|
|
|
* |
176
|
|
|
* The gradient of the cost function to be used with gradient descent: |
177
|
|
|
* ∇J(x) = -(y - h(x)) = (h(x) - y) |
178
|
|
|
*/ |
179
|
|
|
$callback = function ($weights, $sample, $y) use ($penalty) { |
180
|
|
|
$this->weights = $weights; |
181
|
|
|
$hX = $this->output($sample); |
182
|
|
|
|
183
|
|
|
// In cases where $hX = 1 or $hX = 0, the log-likelihood |
184
|
|
|
// value will give a NaN, so we fix these values |
185
|
|
|
if ($hX == 1) { |
186
|
|
|
$hX = 1 - 1e-10; |
187
|
|
|
} |
188
|
|
|
|
189
|
|
|
if ($hX == 0) { |
190
|
|
|
$hX = 1e-10; |
191
|
|
|
} |
192
|
|
|
|
193
|
|
|
$y = $y < 0 ? 0 : 1; |
194
|
|
|
|
195
|
|
|
$error = -$y * log($hX) - (1 - $y) * log(1 - $hX); |
196
|
|
|
$gradient = $hX - $y; |
197
|
|
|
|
198
|
|
|
return [$error, $gradient, $penalty]; |
199
|
|
|
}; |
200
|
|
|
|
201
|
|
|
return $callback; |
202
|
|
|
|
203
|
|
|
case 'sse': |
204
|
|
|
/* |
205
|
|
|
* Sum of squared errors or least squared errors cost function: |
206
|
|
|
* J(x) = ∑ (y - h(x))^2 |
207
|
|
|
* |
208
|
|
|
* If regularization term is given, then it will be added to the cost: |
209
|
|
|
* for L2 : J(x) = J(x) + λ/m . w |
210
|
|
|
* |
211
|
|
|
* The gradient of the cost function: |
212
|
|
|
* ∇J(x) = -(h(x) - y) . h(x) . (1 - h(x)) |
213
|
|
|
*/ |
214
|
|
|
$callback = function ($weights, $sample, $y) use ($penalty) { |
215
|
|
|
$this->weights = $weights; |
216
|
|
|
$hX = $this->output($sample); |
217
|
|
|
|
218
|
|
|
$y = $y < 0 ? 0 : 1; |
219
|
|
|
|
220
|
|
|
$error = ($y - $hX) ** 2; |
221
|
|
|
$gradient = -($y - $hX) * $hX * (1 - $hX); |
222
|
|
|
|
223
|
|
|
return [$error, $gradient, $penalty]; |
224
|
|
|
}; |
225
|
|
|
|
226
|
|
|
return $callback; |
227
|
|
|
|
228
|
|
|
default: |
229
|
|
|
throw new Exception(sprintf('Logistic regression has invalid cost function: %s.', $this->costFunction)); |
230
|
|
|
} |
231
|
|
|
} |
232
|
|
|
|
233
|
|
|
/** |
234
|
|
|
* Returns the output of the network, a float value between 0.0 and 1.0 |
235
|
|
|
*/ |
236
|
|
|
protected function output(array $sample): float |
237
|
|
|
{ |
238
|
|
|
$sum = parent::output($sample); |
239
|
|
|
|
240
|
|
|
return 1.0 / (1.0 + exp(-$sum)); |
241
|
|
|
} |
242
|
|
|
|
243
|
|
|
/** |
244
|
|
|
* Returns the class value (either -1 or 1) for the given input |
245
|
|
|
*/ |
246
|
|
|
protected function outputClass(array $sample): int |
247
|
|
|
{ |
248
|
|
|
$output = $this->output($sample); |
249
|
|
|
|
250
|
|
|
if ($output > 0.5) { |
251
|
|
|
return 1; |
252
|
|
|
} |
253
|
|
|
|
254
|
|
|
return -1; |
255
|
|
|
} |
256
|
|
|
|
257
|
|
|
/** |
258
|
|
|
* Returns the probability of the sample of belonging to the given label. |
259
|
|
|
* |
260
|
|
|
* The probability is simply taken as the distance of the sample |
261
|
|
|
* to the decision plane. |
262
|
|
|
* |
263
|
|
|
* @param mixed $label |
264
|
|
|
*/ |
265
|
|
|
protected function predictProbability(array $sample, $label): float |
266
|
|
|
{ |
267
|
|
|
$sample = $this->checkNormalizedSample($sample); |
268
|
|
|
$probability = $this->output($sample); |
269
|
|
|
|
270
|
|
|
if (array_search($label, $this->labels, true) > 0) { |
271
|
|
|
return $probability; |
272
|
|
|
} |
273
|
|
|
|
274
|
|
|
return 1 - $probability; |
275
|
|
|
} |
276
|
|
|
} |
277
|
|
|
|
This check looks for assignments to scalar types that may be of the wrong type.
To ensure the code behaves as expected, it may be a good idea to add an explicit type cast.