|
1
|
|
|
<?php |
|
2
|
|
|
|
|
3
|
|
|
declare(strict_types=1); |
|
4
|
|
|
|
|
5
|
|
|
namespace Phpml\Metric; |
|
6
|
|
|
|
|
7
|
|
|
use Phpml\Exception\InvalidArgumentException; |
|
8
|
|
|
|
|
9
|
|
|
class ClassificationReport |
|
10
|
|
|
{ |
|
11
|
|
|
public const MICRO_AVERAGE = 1; |
|
12
|
|
|
|
|
13
|
|
|
public const MACRO_AVERAGE = 2; |
|
14
|
|
|
|
|
15
|
|
|
public const WEIGHTED_AVERAGE = 3; |
|
16
|
|
|
|
|
17
|
|
|
/** |
|
18
|
|
|
* @var array |
|
19
|
|
|
*/ |
|
20
|
|
|
private $truePositive = []; |
|
21
|
|
|
|
|
22
|
|
|
/** |
|
23
|
|
|
* @var array |
|
24
|
|
|
*/ |
|
25
|
|
|
private $falsePositive = []; |
|
26
|
|
|
|
|
27
|
|
|
/** |
|
28
|
|
|
* @var array |
|
29
|
|
|
*/ |
|
30
|
|
|
private $falseNegative = []; |
|
31
|
|
|
|
|
32
|
|
|
/** |
|
33
|
|
|
* @var array |
|
34
|
|
|
*/ |
|
35
|
|
|
private $support = []; |
|
36
|
|
|
|
|
37
|
|
|
/** |
|
38
|
|
|
* @var array |
|
39
|
|
|
*/ |
|
40
|
|
|
private $precision = []; |
|
41
|
|
|
|
|
42
|
|
|
/** |
|
43
|
|
|
* @var array |
|
44
|
|
|
*/ |
|
45
|
|
|
private $recall = []; |
|
46
|
|
|
|
|
47
|
|
|
/** |
|
48
|
|
|
* @var array |
|
49
|
|
|
*/ |
|
50
|
|
|
private $f1score = []; |
|
51
|
|
|
|
|
52
|
|
|
/** |
|
53
|
|
|
* @var array |
|
54
|
|
|
*/ |
|
55
|
|
|
private $average = []; |
|
56
|
|
|
|
|
57
|
|
|
public function __construct(array $actualLabels, array $predictedLabels, int $average = self::MACRO_AVERAGE) |
|
58
|
|
|
{ |
|
59
|
|
|
$averagingMethods = range(self::MICRO_AVERAGE, self::WEIGHTED_AVERAGE); |
|
60
|
|
|
if (!in_array($average, $averagingMethods, true)) { |
|
61
|
|
|
throw new InvalidArgumentException('Averaging method must be MICRO_AVERAGE, MACRO_AVERAGE or WEIGHTED_AVERAGE'); |
|
62
|
|
|
} |
|
63
|
|
|
|
|
64
|
|
|
$this->aggregateClassificationResults($actualLabels, $predictedLabels); |
|
65
|
|
|
$this->computeMetrics(); |
|
66
|
|
|
$this->computeAverage($average); |
|
67
|
|
|
} |
|
68
|
|
|
|
|
69
|
|
|
public function getPrecision(): array |
|
70
|
|
|
{ |
|
71
|
|
|
return $this->precision; |
|
72
|
|
|
} |
|
73
|
|
|
|
|
74
|
|
|
public function getRecall(): array |
|
75
|
|
|
{ |
|
76
|
|
|
return $this->recall; |
|
77
|
|
|
} |
|
78
|
|
|
|
|
79
|
|
|
public function getF1score(): array |
|
80
|
|
|
{ |
|
81
|
|
|
return $this->f1score; |
|
82
|
|
|
} |
|
83
|
|
|
|
|
84
|
|
|
public function getSupport(): array |
|
85
|
|
|
{ |
|
86
|
|
|
return $this->support; |
|
87
|
|
|
} |
|
88
|
|
|
|
|
89
|
|
|
public function getAverage(): array |
|
90
|
|
|
{ |
|
91
|
|
|
return $this->average; |
|
92
|
|
|
} |
|
93
|
|
|
|
|
94
|
|
|
private function aggregateClassificationResults(array $actualLabels, array $predictedLabels): void |
|
95
|
|
|
{ |
|
96
|
|
|
$truePositive = $falsePositive = $falseNegative = $support = self::getLabelIndexedArray($actualLabels, $predictedLabels); |
|
97
|
|
|
|
|
98
|
|
|
foreach ($actualLabels as $index => $actual) { |
|
99
|
|
|
$predicted = $predictedLabels[$index]; |
|
100
|
|
|
++$support[$actual]; |
|
101
|
|
|
|
|
102
|
|
|
if ($actual === $predicted) { |
|
103
|
|
|
++$truePositive[$actual]; |
|
104
|
|
|
} else { |
|
105
|
|
|
++$falsePositive[$predicted]; |
|
106
|
|
|
++$falseNegative[$actual]; |
|
107
|
|
|
} |
|
108
|
|
|
} |
|
109
|
|
|
|
|
110
|
|
|
$this->truePositive = $truePositive; |
|
111
|
|
|
$this->falsePositive = $falsePositive; |
|
112
|
|
|
$this->falseNegative = $falseNegative; |
|
113
|
|
|
$this->support = $support; |
|
114
|
|
|
} |
|
115
|
|
|
|
|
116
|
|
|
private function computeMetrics(): void |
|
117
|
|
|
{ |
|
118
|
|
|
foreach ($this->truePositive as $label => $tp) { |
|
119
|
|
|
$this->precision[$label] = $this->computePrecision($tp, $this->falsePositive[$label]); |
|
120
|
|
|
$this->recall[$label] = $this->computeRecall($tp, $this->falseNegative[$label]); |
|
121
|
|
|
$this->f1score[$label] = $this->computeF1Score((float) $this->precision[$label], (float) $this->recall[$label]); |
|
122
|
|
|
} |
|
123
|
|
|
} |
|
124
|
|
|
|
|
125
|
|
|
private function computeAverage(int $average): void |
|
126
|
|
|
{ |
|
127
|
|
|
switch ($average) { |
|
128
|
|
|
case self::MICRO_AVERAGE: |
|
129
|
|
|
$this->computeMicroAverage(); |
|
130
|
|
|
|
|
131
|
|
|
return; |
|
132
|
|
|
case self::MACRO_AVERAGE: |
|
133
|
|
|
$this->computeMacroAverage(); |
|
134
|
|
|
|
|
135
|
|
|
return; |
|
136
|
|
|
case self::WEIGHTED_AVERAGE: |
|
137
|
|
|
$this->computeWeightedAverage(); |
|
138
|
|
|
|
|
139
|
|
|
return; |
|
140
|
|
|
} |
|
141
|
|
|
} |
|
142
|
|
|
|
|
143
|
|
|
private function computeMicroAverage(): void |
|
144
|
|
|
{ |
|
145
|
|
|
$truePositive = (int) array_sum($this->truePositive); |
|
146
|
|
|
$falsePositive = (int) array_sum($this->falsePositive); |
|
147
|
|
|
$falseNegative = (int) array_sum($this->falseNegative); |
|
148
|
|
|
|
|
149
|
|
|
$precision = $this->computePrecision($truePositive, $falsePositive); |
|
150
|
|
|
$recall = $this->computeRecall($truePositive, $falseNegative); |
|
151
|
|
|
$f1score = $this->computeF1Score($precision, $recall); |
|
152
|
|
|
|
|
153
|
|
|
$this->average = compact('precision', 'recall', 'f1score'); |
|
154
|
|
|
} |
|
155
|
|
|
|
|
156
|
|
|
private function computeMacroAverage(): void |
|
157
|
|
|
{ |
|
158
|
|
|
foreach (['precision', 'recall', 'f1score'] as $metric) { |
|
159
|
|
|
$values = $this->{$metric}; |
|
160
|
|
|
if (count($values) == 0) { |
|
161
|
|
|
$this->average[$metric] = 0.0; |
|
162
|
|
|
|
|
163
|
|
|
continue; |
|
164
|
|
|
} |
|
165
|
|
|
|
|
166
|
|
|
$this->average[$metric] = array_sum($values) / count($values); |
|
167
|
|
|
} |
|
168
|
|
|
} |
|
169
|
|
|
|
|
170
|
|
|
private function computeWeightedAverage(): void |
|
171
|
|
|
{ |
|
172
|
|
|
foreach (['precision', 'recall', 'f1score'] as $metric) { |
|
173
|
|
|
$values = $this->{$metric}; |
|
174
|
|
|
if (count($values) == 0) { |
|
175
|
|
|
$this->average[$metric] = 0.0; |
|
176
|
|
|
|
|
177
|
|
|
continue; |
|
178
|
|
|
} |
|
179
|
|
|
|
|
180
|
|
|
$sum = 0; |
|
181
|
|
|
foreach ($values as $i => $value) { |
|
182
|
|
|
$sum += $value * $this->support[$i]; |
|
183
|
|
|
} |
|
184
|
|
|
|
|
185
|
|
|
$this->average[$metric] = $sum / array_sum($this->support); |
|
186
|
|
|
} |
|
187
|
|
|
} |
|
188
|
|
|
|
|
189
|
|
|
private function computePrecision(int $truePositive, int $falsePositive): float |
|
190
|
|
|
{ |
|
191
|
|
|
$divider = $truePositive + $falsePositive; |
|
192
|
|
|
if ($divider == 0) { |
|
193
|
|
|
return 0.0; |
|
194
|
|
|
} |
|
195
|
|
|
|
|
196
|
|
|
return $truePositive / $divider; |
|
197
|
|
|
} |
|
198
|
|
|
|
|
199
|
|
|
private function computeRecall(int $truePositive, int $falseNegative): float |
|
200
|
|
|
{ |
|
201
|
|
|
$divider = $truePositive + $falseNegative; |
|
202
|
|
|
if ($divider == 0) { |
|
203
|
|
|
return 0.0; |
|
204
|
|
|
} |
|
205
|
|
|
|
|
206
|
|
|
return $truePositive / $divider; |
|
207
|
|
|
} |
|
208
|
|
|
|
|
209
|
|
|
private function computeF1Score(float $precision, float $recall): float |
|
210
|
|
|
{ |
|
211
|
|
|
$divider = $precision + $recall; |
|
212
|
|
|
if ($divider == 0) { |
|
213
|
|
|
return 0.0; |
|
214
|
|
|
} |
|
215
|
|
|
|
|
216
|
|
|
return 2.0 * (($precision * $recall) / $divider); |
|
217
|
|
|
} |
|
218
|
|
|
|
|
219
|
|
|
private static function getLabelIndexedArray(array $actualLabels, array $predictedLabels): array |
|
220
|
|
|
{ |
|
221
|
|
|
$labels = array_values(array_unique(array_merge($actualLabels, $predictedLabels))); |
|
222
|
|
|
sort($labels); |
|
223
|
|
|
|
|
224
|
|
|
return (array) array_combine($labels, array_fill(0, count($labels), 0)); |
|
225
|
|
|
} |
|
226
|
|
|
} |
|
227
|
|
|
|