|
1
|
|
|
<?php |
|
2
|
|
|
|
|
3
|
|
|
declare(strict_types=1); |
|
4
|
|
|
|
|
5
|
|
|
namespace Phpml\DimensionReduction; |
|
6
|
|
|
|
|
7
|
|
|
use Closure; |
|
8
|
|
|
use Phpml\Exception\InvalidArgumentException; |
|
9
|
|
|
use Phpml\Exception\InvalidOperationException; |
|
10
|
|
|
use Phpml\Math\Distance\Euclidean; |
|
11
|
|
|
use Phpml\Math\Distance\Manhattan; |
|
12
|
|
|
use Phpml\Math\Matrix; |
|
13
|
|
|
|
|
14
|
|
|
class KernelPCA extends PCA |
|
15
|
|
|
{ |
|
16
|
|
|
public const KERNEL_RBF = 1; |
|
17
|
|
|
|
|
18
|
|
|
public const KERNEL_SIGMOID = 2; |
|
19
|
|
|
|
|
20
|
|
|
public const KERNEL_LAPLACIAN = 3; |
|
21
|
|
|
|
|
22
|
|
|
public const KERNEL_LINEAR = 4; |
|
23
|
|
|
|
|
24
|
|
|
/** |
|
25
|
|
|
* Selected kernel function |
|
26
|
|
|
* |
|
27
|
|
|
* @var int |
|
28
|
|
|
*/ |
|
29
|
|
|
protected $kernel; |
|
30
|
|
|
|
|
31
|
|
|
/** |
|
32
|
|
|
* Gamma value used by the kernel |
|
33
|
|
|
* |
|
34
|
|
|
* @var float|null |
|
35
|
|
|
*/ |
|
36
|
|
|
protected $gamma; |
|
37
|
|
|
|
|
38
|
|
|
/** |
|
39
|
|
|
* Original dataset used to fit KernelPCA |
|
40
|
|
|
* |
|
41
|
|
|
* @var array |
|
42
|
|
|
*/ |
|
43
|
|
|
protected $data = []; |
|
44
|
|
|
|
|
45
|
|
|
/** |
|
46
|
|
|
* Kernel principal component analysis (KernelPCA) is an extension of PCA using |
|
47
|
|
|
* techniques of kernel methods. It is more suitable for data that involves |
|
48
|
|
|
* vectors that are not linearly separable<br><br> |
|
49
|
|
|
* Example: <b>$kpca = new KernelPCA(KernelPCA::KERNEL_RBF, null, 2, 15.0);</b> |
|
50
|
|
|
* will initialize the algorithm with an RBF kernel having the gamma parameter as 15,0. <br> |
|
51
|
|
|
* This transformation will return the same number of rows with only <i>2</i> columns. |
|
52
|
|
|
* |
|
53
|
|
|
* @param float $totalVariance Total variance to be preserved if numFeatures is not given |
|
54
|
|
|
* @param int $numFeatures Number of columns to be returned |
|
55
|
|
|
* @param float $gamma Gamma parameter is used with RBF and Sigmoid kernels |
|
56
|
|
|
* |
|
57
|
|
|
* @throws InvalidArgumentException |
|
58
|
|
|
*/ |
|
59
|
|
|
public function __construct(int $kernel = self::KERNEL_RBF, ?float $totalVariance = null, ?int $numFeatures = null, ?float $gamma = null) |
|
60
|
|
|
{ |
|
61
|
|
|
if (!in_array($kernel, [self::KERNEL_RBF, self::KERNEL_SIGMOID, self::KERNEL_LAPLACIAN, self::KERNEL_LINEAR], true)) { |
|
62
|
|
|
throw new InvalidArgumentException('KernelPCA can be initialized with the following kernels only: Linear, RBF, Sigmoid and Laplacian'); |
|
63
|
|
|
} |
|
64
|
|
|
|
|
65
|
|
|
parent::__construct($totalVariance, $numFeatures); |
|
66
|
|
|
|
|
67
|
|
|
$this->kernel = $kernel; |
|
68
|
|
|
$this->gamma = $gamma; |
|
69
|
|
|
} |
|
70
|
|
|
|
|
71
|
|
|
/** |
|
72
|
|
|
* Takes a data and returns a lower dimensional version |
|
73
|
|
|
* of this data while preserving $totalVariance or $numFeatures. <br> |
|
74
|
|
|
* $data is an n-by-m matrix and returned array is |
|
75
|
|
|
* n-by-k matrix where k <= m |
|
76
|
|
|
*/ |
|
77
|
|
|
public function fit(array $data): array |
|
78
|
|
|
{ |
|
79
|
|
|
$numRows = count($data); |
|
80
|
|
|
$this->data = $data; |
|
81
|
|
|
|
|
82
|
|
|
if ($this->gamma === null) { |
|
83
|
|
|
$this->gamma = 1.0 / $numRows; |
|
84
|
|
|
} |
|
85
|
|
|
|
|
86
|
|
|
$matrix = $this->calculateKernelMatrix($this->data, $numRows); |
|
87
|
|
|
$matrix = $this->centerMatrix($matrix, $numRows); |
|
88
|
|
|
|
|
89
|
|
|
$this->eigenDecomposition($matrix); |
|
90
|
|
|
|
|
91
|
|
|
$this->fit = true; |
|
92
|
|
|
|
|
93
|
|
|
return Matrix::transposeArray($this->eigVectors); |
|
94
|
|
|
} |
|
95
|
|
|
|
|
96
|
|
|
/** |
|
97
|
|
|
* Transforms the given sample to a lower dimensional vector by using |
|
98
|
|
|
* the variables obtained during the last run of <code>fit</code>. |
|
99
|
|
|
* |
|
100
|
|
|
* @throws InvalidArgumentException |
|
101
|
|
|
* @throws InvalidOperationException |
|
102
|
|
|
*/ |
|
103
|
|
|
public function transform(array $sample): array |
|
104
|
|
|
{ |
|
105
|
|
|
if (!$this->fit) { |
|
106
|
|
|
throw new InvalidOperationException('KernelPCA has not been fitted with respect to original dataset, please run KernelPCA::fit() first'); |
|
107
|
|
|
} |
|
108
|
|
|
|
|
109
|
|
|
if (is_array($sample[0])) { |
|
110
|
|
|
throw new InvalidArgumentException('KernelPCA::transform() accepts only one-dimensional arrays'); |
|
111
|
|
|
} |
|
112
|
|
|
|
|
113
|
|
|
$pairs = $this->getDistancePairs($sample); |
|
114
|
|
|
|
|
115
|
|
|
return $this->projectSample($pairs); |
|
116
|
|
|
} |
|
117
|
|
|
|
|
118
|
|
|
/** |
|
119
|
|
|
* Calculates similarity matrix by use of selected kernel function<br> |
|
120
|
|
|
* An n-by-m matrix is given and an n-by-n matrix is returned |
|
121
|
|
|
*/ |
|
122
|
|
|
protected function calculateKernelMatrix(array $data, int $numRows): array |
|
123
|
|
|
{ |
|
124
|
|
|
$kernelFunc = $this->getKernel(); |
|
125
|
|
|
|
|
126
|
|
|
$matrix = []; |
|
127
|
|
|
for ($i = 0; $i < $numRows; ++$i) { |
|
128
|
|
|
for ($k = 0; $k < $numRows; ++$k) { |
|
129
|
|
|
if ($i <= $k) { |
|
130
|
|
|
$matrix[$i][$k] = $kernelFunc($data[$i], $data[$k]); |
|
131
|
|
|
} else { |
|
132
|
|
|
$matrix[$i][$k] = $matrix[$k][$i]; |
|
133
|
|
|
} |
|
134
|
|
|
} |
|
135
|
|
|
} |
|
136
|
|
|
|
|
137
|
|
|
return $matrix; |
|
138
|
|
|
} |
|
139
|
|
|
|
|
140
|
|
|
/** |
|
141
|
|
|
* Kernel matrix is centered in its original space by using the following |
|
142
|
|
|
* conversion: |
|
143
|
|
|
* |
|
144
|
|
|
* K′ = K − N.K − K.N + N.K.N where N is n-by-n matrix filled with 1/n |
|
145
|
|
|
*/ |
|
146
|
|
|
protected function centerMatrix(array $matrix, int $n): array |
|
147
|
|
|
{ |
|
148
|
|
|
$N = array_fill(0, $n, array_fill(0, $n, 1.0 / $n)); |
|
149
|
|
|
$N = new Matrix($N, false); |
|
150
|
|
|
$K = new Matrix($matrix, false); |
|
151
|
|
|
|
|
152
|
|
|
// K.N (This term is repeated so we cache it once) |
|
153
|
|
|
$K_N = $K->multiply($N); |
|
154
|
|
|
// N.K |
|
155
|
|
|
$N_K = $N->multiply($K); |
|
156
|
|
|
// N.K.N |
|
157
|
|
|
$N_K_N = $N->multiply($K_N); |
|
158
|
|
|
|
|
159
|
|
|
return $K->subtract($N_K) |
|
160
|
|
|
->subtract($K_N) |
|
161
|
|
|
->add($N_K_N) |
|
162
|
|
|
->toArray(); |
|
163
|
|
|
} |
|
164
|
|
|
|
|
165
|
|
|
/** |
|
166
|
|
|
* Returns the callable kernel function |
|
167
|
|
|
* |
|
168
|
|
|
* @throws \Exception |
|
169
|
|
|
*/ |
|
170
|
|
|
protected function getKernel(): Closure |
|
171
|
|
|
{ |
|
172
|
|
|
switch ($this->kernel) { |
|
173
|
|
|
case self::KERNEL_LINEAR: |
|
174
|
|
|
// k(x,y) = xT.y |
|
175
|
|
|
return function ($x, $y) { |
|
176
|
|
|
return Matrix::dot($x, $y)[0]; |
|
177
|
|
|
}; |
|
178
|
|
|
case self::KERNEL_RBF: |
|
179
|
|
|
// k(x,y)=exp(-γ.|x-y|) where |..| is Euclidean distance |
|
180
|
|
|
$dist = new Euclidean(); |
|
181
|
|
|
|
|
182
|
|
|
return function ($x, $y) use ($dist): float { |
|
183
|
|
|
return exp(-$this->gamma * $dist->sqDistance($x, $y)); |
|
184
|
|
|
}; |
|
185
|
|
|
|
|
186
|
|
|
case self::KERNEL_SIGMOID: |
|
187
|
|
|
// k(x,y)=tanh(γ.xT.y+c0) where c0=1 |
|
188
|
|
|
return function ($x, $y): float { |
|
189
|
|
|
$res = Matrix::dot($x, $y)[0] + 1.0; |
|
190
|
|
|
|
|
191
|
|
|
return tanh((float) $this->gamma * $res); |
|
192
|
|
|
}; |
|
193
|
|
|
|
|
194
|
|
|
case self::KERNEL_LAPLACIAN: |
|
195
|
|
|
// k(x,y)=exp(-γ.|x-y|) where |..| is Manhattan distance |
|
196
|
|
|
$dist = new Manhattan(); |
|
197
|
|
|
|
|
198
|
|
|
return function ($x, $y) use ($dist): float { |
|
199
|
|
|
return exp(-$this->gamma * $dist->distance($x, $y)); |
|
200
|
|
|
}; |
|
201
|
|
|
|
|
202
|
|
|
default: |
|
203
|
|
|
// Not reached |
|
204
|
|
|
throw new InvalidArgumentException(sprintf('KernelPCA initialized with invalid kernel: %d', $this->kernel)); |
|
205
|
|
|
} |
|
206
|
|
|
} |
|
207
|
|
|
|
|
208
|
|
|
protected function getDistancePairs(array $sample): array |
|
209
|
|
|
{ |
|
210
|
|
|
$kernel = $this->getKernel(); |
|
211
|
|
|
|
|
212
|
|
|
$pairs = []; |
|
213
|
|
|
foreach ($this->data as $row) { |
|
214
|
|
|
$pairs[] = $kernel($row, $sample); |
|
215
|
|
|
} |
|
216
|
|
|
|
|
217
|
|
|
return $pairs; |
|
218
|
|
|
} |
|
219
|
|
|
|
|
220
|
|
|
protected function projectSample(array $pairs): array |
|
221
|
|
|
{ |
|
222
|
|
|
// Normalize eigenvectors by eig = eigVectors / eigValues |
|
223
|
|
|
$func = function ($eigVal, $eigVect) { |
|
224
|
|
|
$m = new Matrix($eigVect, false); |
|
225
|
|
|
$a = $m->divideByScalar($eigVal)->toArray(); |
|
226
|
|
|
|
|
227
|
|
|
return $a[0]; |
|
228
|
|
|
}; |
|
229
|
|
|
$eig = array_map($func, $this->eigValues, $this->eigVectors); |
|
230
|
|
|
|
|
231
|
|
|
// return k.dot(eig) |
|
232
|
|
|
return Matrix::dot($pairs, $eig); |
|
233
|
|
|
} |
|
234
|
|
|
} |
|
235
|
|
|
|