|
1
|
|
|
<?php |
|
2
|
|
|
|
|
3
|
|
|
declare(strict_types=1); |
|
4
|
|
|
|
|
5
|
|
|
namespace Phpml\Classification\Linear; |
|
6
|
|
|
|
|
7
|
|
|
use Phpml\Classification\DecisionTree; |
|
8
|
|
|
use Phpml\Classification\WeightedClassifier; |
|
9
|
|
|
use Phpml\Exception\InvalidArgumentException; |
|
10
|
|
|
use Phpml\Helper\OneVsRest; |
|
11
|
|
|
use Phpml\Helper\Predictable; |
|
12
|
|
|
use Phpml\Math\Comparison; |
|
13
|
|
|
|
|
14
|
|
|
class DecisionStump extends WeightedClassifier |
|
15
|
|
|
{ |
|
16
|
|
|
use Predictable; |
|
17
|
|
|
use OneVsRest; |
|
18
|
|
|
|
|
19
|
|
|
public const AUTO_SELECT = -1; |
|
20
|
|
|
|
|
21
|
|
|
/** |
|
22
|
|
|
* @var int |
|
23
|
|
|
*/ |
|
24
|
|
|
protected $givenColumnIndex; |
|
25
|
|
|
|
|
26
|
|
|
/** |
|
27
|
|
|
* @var array |
|
28
|
|
|
*/ |
|
29
|
|
|
protected $binaryLabels = []; |
|
30
|
|
|
|
|
31
|
|
|
/** |
|
32
|
|
|
* Lowest error rate obtained while training/optimizing the model |
|
33
|
|
|
* |
|
34
|
|
|
* @var float |
|
35
|
|
|
*/ |
|
36
|
|
|
protected $trainingErrorRate; |
|
37
|
|
|
|
|
38
|
|
|
/** |
|
39
|
|
|
* @var int |
|
40
|
|
|
*/ |
|
41
|
|
|
protected $column; |
|
42
|
|
|
|
|
43
|
|
|
/** |
|
44
|
|
|
* @var mixed |
|
45
|
|
|
*/ |
|
46
|
|
|
protected $value; |
|
47
|
|
|
|
|
48
|
|
|
/** |
|
49
|
|
|
* @var string |
|
50
|
|
|
*/ |
|
51
|
|
|
protected $operator; |
|
52
|
|
|
|
|
53
|
|
|
/** |
|
54
|
|
|
* @var array |
|
55
|
|
|
*/ |
|
56
|
|
|
protected $columnTypes = []; |
|
57
|
|
|
|
|
58
|
|
|
/** |
|
59
|
|
|
* @var int |
|
60
|
|
|
*/ |
|
61
|
|
|
protected $featureCount; |
|
62
|
|
|
|
|
63
|
|
|
/** |
|
64
|
|
|
* @var float |
|
65
|
|
|
*/ |
|
66
|
|
|
protected $numSplitCount = 100.0; |
|
67
|
|
|
|
|
68
|
|
|
/** |
|
69
|
|
|
* Distribution of samples in the leaves |
|
70
|
|
|
* |
|
71
|
|
|
* @var array |
|
72
|
|
|
*/ |
|
73
|
|
|
protected $prob = []; |
|
74
|
|
|
|
|
75
|
|
|
/** |
|
76
|
|
|
* A DecisionStump classifier is a one-level deep DecisionTree. It is generally |
|
77
|
|
|
* used with ensemble algorithms as in the weak classifier role. <br> |
|
78
|
|
|
* |
|
79
|
|
|
* If columnIndex is given, then the stump tries to produce a decision node |
|
80
|
|
|
* on this column, otherwise in cases given the value of -1, the stump itself |
|
81
|
|
|
* decides which column to take for the decision (Default DecisionTree behaviour) |
|
82
|
|
|
*/ |
|
83
|
|
|
public function __construct(int $columnIndex = self::AUTO_SELECT) |
|
84
|
|
|
{ |
|
85
|
|
|
$this->givenColumnIndex = $columnIndex; |
|
86
|
|
|
} |
|
87
|
|
|
|
|
88
|
|
|
public function __toString(): string |
|
89
|
|
|
{ |
|
90
|
|
|
return "IF ${this}->column ${this}->operator ${this}->value ". |
|
91
|
|
|
'THEN '.$this->binaryLabels[0].' '. |
|
92
|
|
|
'ELSE '.$this->binaryLabels[1]; |
|
93
|
|
|
} |
|
94
|
|
|
|
|
95
|
|
|
/** |
|
96
|
|
|
* While finding best split point for a numerical valued column, |
|
97
|
|
|
* DecisionStump looks for equally distanced values between minimum and maximum |
|
98
|
|
|
* values in the column. Given <i>$count</i> value determines how many split |
|
99
|
|
|
* points to be probed. The more split counts, the better performance but |
|
100
|
|
|
* worse processing time (Default value is 10.0) |
|
101
|
|
|
*/ |
|
102
|
|
|
public function setNumericalSplitCount(float $count): void |
|
103
|
|
|
{ |
|
104
|
|
|
$this->numSplitCount = $count; |
|
105
|
|
|
} |
|
106
|
|
|
|
|
107
|
|
|
/** |
|
108
|
|
|
* @throws InvalidArgumentException |
|
109
|
|
|
*/ |
|
110
|
|
|
protected function trainBinary(array $samples, array $targets, array $labels): void |
|
111
|
|
|
{ |
|
112
|
|
|
$this->binaryLabels = $labels; |
|
113
|
|
|
$this->featureCount = count($samples[0]); |
|
114
|
|
|
|
|
115
|
|
|
// If a column index is given, it should be among the existing columns |
|
116
|
|
|
if ($this->givenColumnIndex > count($samples[0]) - 1) { |
|
117
|
|
|
$this->givenColumnIndex = self::AUTO_SELECT; |
|
118
|
|
|
} |
|
119
|
|
|
|
|
120
|
|
|
// Check the size of the weights given. |
|
121
|
|
|
// If none given, then assign 1 as a weight to each sample |
|
122
|
|
|
if (count($this->weights) === 0) { |
|
123
|
|
|
$this->weights = array_fill(0, count($samples), 1); |
|
124
|
|
|
} else { |
|
125
|
|
|
$numWeights = count($this->weights); |
|
126
|
|
|
if ($numWeights !== count($samples)) { |
|
127
|
|
|
throw new InvalidArgumentException('Number of sample weights does not match with number of samples'); |
|
128
|
|
|
} |
|
129
|
|
|
} |
|
130
|
|
|
|
|
131
|
|
|
// Determine type of each column as either "continuous" or "nominal" |
|
132
|
|
|
$this->columnTypes = DecisionTree::getColumnTypes($samples); |
|
133
|
|
|
|
|
134
|
|
|
// Try to find the best split in the columns of the dataset |
|
135
|
|
|
// by calculating error rate for each split point in each column |
|
136
|
|
|
$columns = range(0, count($samples[0]) - 1); |
|
137
|
|
|
if ($this->givenColumnIndex !== self::AUTO_SELECT) { |
|
138
|
|
|
$columns = [$this->givenColumnIndex]; |
|
139
|
|
|
} |
|
140
|
|
|
|
|
141
|
|
|
$bestSplit = [ |
|
142
|
|
|
'value' => 0, |
|
143
|
|
|
'operator' => '', |
|
144
|
|
|
'prob' => [], |
|
145
|
|
|
'column' => 0, |
|
146
|
|
|
'trainingErrorRate' => 1.0, |
|
147
|
|
|
]; |
|
148
|
|
|
foreach ($columns as $col) { |
|
149
|
|
|
if ($this->columnTypes[$col] == DecisionTree::CONTINUOUS) { |
|
150
|
|
|
$split = $this->getBestNumericalSplit($samples, $targets, $col); |
|
151
|
|
|
} else { |
|
152
|
|
|
$split = $this->getBestNominalSplit($samples, $targets, $col); |
|
153
|
|
|
} |
|
154
|
|
|
|
|
155
|
|
|
if ($split['trainingErrorRate'] < $bestSplit['trainingErrorRate']) { |
|
156
|
|
|
$bestSplit = $split; |
|
157
|
|
|
} |
|
158
|
|
|
} |
|
159
|
|
|
|
|
160
|
|
|
// Assign determined best values to the stump |
|
161
|
|
|
foreach ($bestSplit as $name => $value) { |
|
162
|
|
|
$this->{$name} = $value; |
|
163
|
|
|
} |
|
164
|
|
|
} |
|
165
|
|
|
|
|
166
|
|
|
/** |
|
167
|
|
|
* Determines best split point for the given column |
|
168
|
|
|
*/ |
|
169
|
|
|
protected function getBestNumericalSplit(array $samples, array $targets, int $col): array |
|
170
|
|
|
{ |
|
171
|
|
|
$values = array_column($samples, $col); |
|
172
|
|
|
// Trying all possible points may be accomplished in two general ways: |
|
173
|
|
|
// 1- Try all values in the $samples array ($values) |
|
174
|
|
|
// 2- Artificially split the range of values into several parts and try them |
|
175
|
|
|
// We choose the second one because it is faster in larger datasets |
|
176
|
|
|
$minValue = min($values); |
|
177
|
|
|
$maxValue = max($values); |
|
178
|
|
|
$stepSize = ($maxValue - $minValue) / $this->numSplitCount; |
|
179
|
|
|
|
|
180
|
|
|
$split = []; |
|
181
|
|
|
|
|
182
|
|
|
foreach (['<=', '>'] as $operator) { |
|
183
|
|
|
// Before trying all possible split points, let's first try |
|
184
|
|
|
// the average value for the cut point |
|
185
|
|
|
$threshold = array_sum($values) / (float) count($values); |
|
186
|
|
|
[$errorRate, $prob] = $this->calculateErrorRate($targets, $threshold, $operator, $values); |
|
187
|
|
|
if (!isset($split['trainingErrorRate']) || $errorRate < $split['trainingErrorRate']) { |
|
188
|
|
|
$split = [ |
|
189
|
|
|
'value' => $threshold, |
|
190
|
|
|
'operator' => $operator, |
|
191
|
|
|
'prob' => $prob, |
|
192
|
|
|
'column' => $col, |
|
193
|
|
|
'trainingErrorRate' => $errorRate, |
|
194
|
|
|
]; |
|
195
|
|
|
} |
|
196
|
|
|
|
|
197
|
|
|
// Try other possible points one by one |
|
198
|
|
|
for ($step = $minValue; $step <= $maxValue; $step += $stepSize) { |
|
199
|
|
|
$threshold = (float) $step; |
|
200
|
|
|
[$errorRate, $prob] = $this->calculateErrorRate($targets, $threshold, $operator, $values); |
|
201
|
|
|
if ($errorRate < $split['trainingErrorRate']) { |
|
202
|
|
|
$split = [ |
|
203
|
|
|
'value' => $threshold, |
|
204
|
|
|
'operator' => $operator, |
|
205
|
|
|
'prob' => $prob, |
|
206
|
|
|
'column' => $col, |
|
207
|
|
|
'trainingErrorRate' => $errorRate, |
|
208
|
|
|
]; |
|
209
|
|
|
} |
|
210
|
|
|
}// for |
|
211
|
|
|
} |
|
212
|
|
|
|
|
213
|
|
|
return $split; |
|
214
|
|
|
} |
|
215
|
|
|
|
|
216
|
|
|
protected function getBestNominalSplit(array $samples, array $targets, int $col): array |
|
217
|
|
|
{ |
|
218
|
|
|
$values = array_column($samples, $col); |
|
219
|
|
|
$valueCounts = array_count_values($values); |
|
220
|
|
|
$distinctVals = array_keys($valueCounts); |
|
221
|
|
|
|
|
222
|
|
|
$split = []; |
|
223
|
|
|
|
|
224
|
|
|
foreach (['=', '!='] as $operator) { |
|
225
|
|
|
foreach ($distinctVals as $val) { |
|
226
|
|
|
[$errorRate, $prob] = $this->calculateErrorRate($targets, $val, $operator, $values); |
|
227
|
|
|
if (!isset($split['trainingErrorRate']) || $split['trainingErrorRate'] < $errorRate) { |
|
228
|
|
|
$split = [ |
|
229
|
|
|
'value' => $val, |
|
230
|
|
|
'operator' => $operator, |
|
231
|
|
|
'prob' => $prob, |
|
232
|
|
|
'column' => $col, |
|
233
|
|
|
'trainingErrorRate' => $errorRate, |
|
234
|
|
|
]; |
|
235
|
|
|
} |
|
236
|
|
|
} |
|
237
|
|
|
} |
|
238
|
|
|
|
|
239
|
|
|
return $split; |
|
240
|
|
|
} |
|
241
|
|
|
|
|
242
|
|
|
/** |
|
243
|
|
|
* Calculates the ratio of wrong predictions based on the new threshold |
|
244
|
|
|
* value given as the parameter |
|
245
|
|
|
*/ |
|
246
|
|
|
protected function calculateErrorRate(array $targets, float $threshold, string $operator, array $values): array |
|
247
|
|
|
{ |
|
248
|
|
|
$wrong = 0.0; |
|
249
|
|
|
$prob = []; |
|
250
|
|
|
$leftLabel = $this->binaryLabels[0]; |
|
251
|
|
|
$rightLabel = $this->binaryLabels[1]; |
|
252
|
|
|
|
|
253
|
|
|
foreach ($values as $index => $value) { |
|
254
|
|
|
if (Comparison::compare($value, $threshold, $operator)) { |
|
255
|
|
|
$predicted = $leftLabel; |
|
256
|
|
|
} else { |
|
257
|
|
|
$predicted = $rightLabel; |
|
258
|
|
|
} |
|
259
|
|
|
|
|
260
|
|
|
$target = $targets[$index]; |
|
261
|
|
|
if ((string) $predicted != (string) $targets[$index]) { |
|
262
|
|
|
$wrong += $this->weights[$index]; |
|
263
|
|
|
} |
|
264
|
|
|
|
|
265
|
|
|
if (!isset($prob[$predicted][$target])) { |
|
266
|
|
|
$prob[$predicted][$target] = 0; |
|
267
|
|
|
} |
|
268
|
|
|
|
|
269
|
|
|
++$prob[$predicted][$target]; |
|
270
|
|
|
} |
|
271
|
|
|
|
|
272
|
|
|
// Calculate probabilities: Proportion of labels in each leaf |
|
273
|
|
|
$dist = array_combine($this->binaryLabels, array_fill(0, 2, 0.0)); |
|
274
|
|
|
foreach ($prob as $leaf => $counts) { |
|
275
|
|
|
$leafTotal = (float) array_sum($prob[$leaf]); |
|
276
|
|
|
foreach ($counts as $label => $count) { |
|
277
|
|
|
if ((string) $leaf == (string) $label) { |
|
278
|
|
|
$dist[$leaf] = $count / $leafTotal; |
|
279
|
|
|
} |
|
280
|
|
|
} |
|
281
|
|
|
} |
|
282
|
|
|
|
|
283
|
|
|
return [$wrong / (float) array_sum($this->weights), $dist]; |
|
284
|
|
|
} |
|
285
|
|
|
|
|
286
|
|
|
/** |
|
287
|
|
|
* Returns the probability of the sample of belonging to the given label |
|
288
|
|
|
* |
|
289
|
|
|
* Probability of a sample is calculated as the proportion of the label |
|
290
|
|
|
* within the labels of the training samples in the decision node |
|
291
|
|
|
* |
|
292
|
|
|
* @param mixed $label |
|
293
|
|
|
*/ |
|
294
|
|
|
protected function predictProbability(array $sample, $label): float |
|
295
|
|
|
{ |
|
296
|
|
|
$predicted = $this->predictSampleBinary($sample); |
|
297
|
|
|
if ((string) $predicted == (string) $label) { |
|
298
|
|
|
return $this->prob[$label]; |
|
299
|
|
|
} |
|
300
|
|
|
|
|
301
|
|
|
return 0.0; |
|
302
|
|
|
} |
|
303
|
|
|
|
|
304
|
|
|
/** |
|
305
|
|
|
* @return mixed |
|
306
|
|
|
*/ |
|
307
|
|
|
protected function predictSampleBinary(array $sample) |
|
308
|
|
|
{ |
|
309
|
|
|
if (Comparison::compare($sample[$this->column], $this->value, $this->operator)) { |
|
310
|
|
|
return $this->binaryLabels[0]; |
|
311
|
|
|
} |
|
312
|
|
|
|
|
313
|
|
|
return $this->binaryLabels[1]; |
|
314
|
|
|
} |
|
315
|
|
|
|
|
316
|
|
|
protected function resetBinary(): void |
|
317
|
|
|
{ |
|
318
|
|
|
} |
|
319
|
|
|
} |
|
320
|
|
|
|