|
1
|
|
|
<?php |
|
2
|
|
|
|
|
3
|
|
|
declare(strict_types=1); |
|
4
|
|
|
|
|
5
|
|
|
namespace Phpml\Classification; |
|
6
|
|
|
|
|
7
|
|
|
use Phpml\Classification\DecisionTree\DecisionTreeLeaf; |
|
8
|
|
|
use Phpml\Exception\InvalidArgumentException; |
|
9
|
|
|
use Phpml\Helper\Predictable; |
|
10
|
|
|
use Phpml\Helper\Trainable; |
|
11
|
|
|
use Phpml\Math\Statistic\Mean; |
|
12
|
|
|
|
|
13
|
|
|
class DecisionTree implements Classifier |
|
14
|
|
|
{ |
|
15
|
|
|
use Trainable; |
|
16
|
|
|
use Predictable; |
|
17
|
|
|
|
|
18
|
|
|
public const CONTINUOUS = 1; |
|
19
|
|
|
|
|
20
|
|
|
public const NOMINAL = 2; |
|
21
|
|
|
|
|
22
|
|
|
/** |
|
23
|
|
|
* @var int |
|
24
|
|
|
*/ |
|
25
|
|
|
public $actualDepth = 0; |
|
26
|
|
|
|
|
27
|
|
|
/** |
|
28
|
|
|
* @var array |
|
29
|
|
|
*/ |
|
30
|
|
|
protected $columnTypes = []; |
|
31
|
|
|
|
|
32
|
|
|
/** |
|
33
|
|
|
* @var DecisionTreeLeaf |
|
34
|
|
|
*/ |
|
35
|
|
|
protected $tree; |
|
36
|
|
|
|
|
37
|
|
|
/** |
|
38
|
|
|
* @var int |
|
39
|
|
|
*/ |
|
40
|
|
|
protected $maxDepth; |
|
41
|
|
|
|
|
42
|
|
|
/** |
|
43
|
|
|
* @var array |
|
44
|
|
|
*/ |
|
45
|
|
|
private $labels = []; |
|
46
|
|
|
|
|
47
|
|
|
/** |
|
48
|
|
|
* @var int |
|
49
|
|
|
*/ |
|
50
|
|
|
private $featureCount = 0; |
|
51
|
|
|
|
|
52
|
|
|
/** |
|
53
|
|
|
* @var int |
|
54
|
|
|
*/ |
|
55
|
|
|
private $numUsableFeatures = 0; |
|
56
|
|
|
|
|
57
|
|
|
/** |
|
58
|
|
|
* @var array |
|
59
|
|
|
*/ |
|
60
|
|
|
private $selectedFeatures = []; |
|
61
|
|
|
|
|
62
|
|
|
/** |
|
63
|
|
|
* @var array|null |
|
64
|
|
|
*/ |
|
65
|
|
|
private $featureImportances; |
|
66
|
|
|
|
|
67
|
|
|
/** |
|
68
|
|
|
* @var array |
|
69
|
|
|
*/ |
|
70
|
|
|
private $columnNames = []; |
|
71
|
|
|
|
|
72
|
|
|
public function __construct(int $maxDepth = 10) |
|
73
|
|
|
{ |
|
74
|
|
|
$this->maxDepth = $maxDepth; |
|
75
|
|
|
} |
|
76
|
|
|
|
|
77
|
|
|
public function train(array $samples, array $targets): void |
|
78
|
|
|
{ |
|
79
|
|
|
$this->samples = array_merge($this->samples, $samples); |
|
80
|
|
|
$this->targets = array_merge($this->targets, $targets); |
|
81
|
|
|
|
|
82
|
|
|
$this->featureCount = count($this->samples[0]); |
|
83
|
|
|
$this->columnTypes = self::getColumnTypes($this->samples); |
|
84
|
|
|
$this->labels = array_keys(array_count_values($this->targets)); |
|
85
|
|
|
$this->tree = $this->getSplitLeaf(range(0, count($this->samples) - 1)); |
|
86
|
|
|
|
|
87
|
|
|
// Each time the tree is trained, feature importances are reset so that |
|
88
|
|
|
// we will have to compute it again depending on the new data |
|
89
|
|
|
$this->featureImportances = null; |
|
90
|
|
|
|
|
91
|
|
|
// If column names are given or computed before, then there is no |
|
92
|
|
|
// need to init it and accidentally remove the previous given names |
|
93
|
|
|
if ($this->columnNames === []) { |
|
94
|
|
|
$this->columnNames = range(0, $this->featureCount - 1); |
|
95
|
|
|
} elseif (count($this->columnNames) > $this->featureCount) { |
|
96
|
|
|
$this->columnNames = array_slice($this->columnNames, 0, $this->featureCount); |
|
97
|
|
|
} elseif (count($this->columnNames) < $this->featureCount) { |
|
98
|
|
|
$this->columnNames = array_merge( |
|
99
|
|
|
$this->columnNames, |
|
100
|
|
|
range(count($this->columnNames), $this->featureCount - 1) |
|
101
|
|
|
); |
|
102
|
|
|
} |
|
103
|
|
|
} |
|
104
|
|
|
|
|
105
|
|
|
public static function getColumnTypes(array $samples): array |
|
106
|
|
|
{ |
|
107
|
|
|
$types = []; |
|
108
|
|
|
$featureCount = count($samples[0]); |
|
109
|
|
|
for ($i = 0; $i < $featureCount; ++$i) { |
|
110
|
|
|
$values = array_column($samples, $i); |
|
111
|
|
|
$isCategorical = self::isCategoricalColumn($values); |
|
112
|
|
|
$types[] = $isCategorical ? self::NOMINAL : self::CONTINUOUS; |
|
113
|
|
|
} |
|
114
|
|
|
|
|
115
|
|
|
return $types; |
|
116
|
|
|
} |
|
117
|
|
|
|
|
118
|
|
|
/** |
|
119
|
|
|
* @param mixed $baseValue |
|
120
|
|
|
*/ |
|
121
|
|
|
public function getGiniIndex($baseValue, array $colValues, array $targets): float |
|
122
|
|
|
{ |
|
123
|
|
|
$countMatrix = []; |
|
124
|
|
|
foreach ($this->labels as $label) { |
|
125
|
|
|
$countMatrix[$label] = [0, 0]; |
|
126
|
|
|
} |
|
127
|
|
|
|
|
128
|
|
|
foreach ($colValues as $index => $value) { |
|
129
|
|
|
$label = $targets[$index]; |
|
130
|
|
|
$rowIndex = $value === $baseValue ? 0 : 1; |
|
131
|
|
|
++$countMatrix[$label][$rowIndex]; |
|
132
|
|
|
} |
|
133
|
|
|
|
|
134
|
|
|
$giniParts = [0, 0]; |
|
135
|
|
|
for ($i = 0; $i <= 1; ++$i) { |
|
136
|
|
|
$part = 0; |
|
137
|
|
|
$sum = array_sum(array_column($countMatrix, $i)); |
|
138
|
|
|
if ($sum > 0) { |
|
139
|
|
|
foreach ($this->labels as $label) { |
|
140
|
|
|
$part += ($countMatrix[$label][$i] / (float) $sum) ** 2; |
|
141
|
|
|
} |
|
142
|
|
|
} |
|
143
|
|
|
|
|
144
|
|
|
$giniParts[$i] = (1 - $part) * $sum; |
|
145
|
|
|
} |
|
146
|
|
|
|
|
147
|
|
|
return array_sum($giniParts) / count($colValues); |
|
148
|
|
|
} |
|
149
|
|
|
|
|
150
|
|
|
/** |
|
151
|
|
|
* This method is used to set number of columns to be used |
|
152
|
|
|
* when deciding a split at an internal node of the tree. <br> |
|
153
|
|
|
* If the value is given 0, then all features are used (default behaviour), |
|
154
|
|
|
* otherwise the given value will be used as a maximum for number of columns |
|
155
|
|
|
* randomly selected for each split operation. |
|
156
|
|
|
* |
|
157
|
|
|
* @return $this |
|
158
|
|
|
* |
|
159
|
|
|
* @throws InvalidArgumentException |
|
160
|
|
|
*/ |
|
161
|
|
|
public function setNumFeatures(int $numFeatures) |
|
162
|
|
|
{ |
|
163
|
|
|
if ($numFeatures < 0) { |
|
164
|
|
|
throw new InvalidArgumentException('Selected column count should be greater or equal to zero'); |
|
165
|
|
|
} |
|
166
|
|
|
|
|
167
|
|
|
$this->numUsableFeatures = $numFeatures; |
|
168
|
|
|
|
|
169
|
|
|
return $this; |
|
170
|
|
|
} |
|
171
|
|
|
|
|
172
|
|
|
/** |
|
173
|
|
|
* A string array to represent columns. Useful when HTML output or |
|
174
|
|
|
* column importances are desired to be inspected. |
|
175
|
|
|
* |
|
176
|
|
|
* @return $this |
|
177
|
|
|
* |
|
178
|
|
|
* @throws InvalidArgumentException |
|
179
|
|
|
*/ |
|
180
|
|
|
public function setColumnNames(array $names) |
|
181
|
|
|
{ |
|
182
|
|
|
if ($this->featureCount !== 0 && count($names) !== $this->featureCount) { |
|
183
|
|
|
throw new InvalidArgumentException(sprintf('Length of the given array should be equal to feature count %s', $this->featureCount)); |
|
184
|
|
|
} |
|
185
|
|
|
|
|
186
|
|
|
$this->columnNames = $names; |
|
187
|
|
|
|
|
188
|
|
|
return $this; |
|
189
|
|
|
} |
|
190
|
|
|
|
|
191
|
|
|
public function getHtml(): string |
|
192
|
|
|
{ |
|
193
|
|
|
return $this->tree->getHTML($this->columnNames); |
|
194
|
|
|
} |
|
195
|
|
|
|
|
196
|
|
|
/** |
|
197
|
|
|
* This will return an array including an importance value for |
|
198
|
|
|
* each column in the given dataset. The importance values are |
|
199
|
|
|
* normalized and their total makes 1.<br/> |
|
200
|
|
|
*/ |
|
201
|
|
|
public function getFeatureImportances(): array |
|
202
|
|
|
{ |
|
203
|
|
|
if ($this->featureImportances !== null) { |
|
204
|
|
|
return $this->featureImportances; |
|
205
|
|
|
} |
|
206
|
|
|
|
|
207
|
|
|
$sampleCount = count($this->samples); |
|
208
|
|
|
$this->featureImportances = []; |
|
209
|
|
|
foreach ($this->columnNames as $column => $columnName) { |
|
210
|
|
|
$nodes = $this->getSplitNodesByColumn($column, $this->tree); |
|
211
|
|
|
|
|
212
|
|
|
$importance = 0; |
|
213
|
|
|
foreach ($nodes as $node) { |
|
214
|
|
|
$importance += $node->getNodeImpurityDecrease($sampleCount); |
|
215
|
|
|
} |
|
216
|
|
|
|
|
217
|
|
|
$this->featureImportances[$columnName] = $importance; |
|
218
|
|
|
} |
|
219
|
|
|
|
|
220
|
|
|
// Normalize & sort the importances |
|
221
|
|
|
$total = array_sum($this->featureImportances); |
|
222
|
|
|
if ($total > 0) { |
|
223
|
|
|
array_walk($this->featureImportances, function (&$importance) use ($total): void { |
|
224
|
|
|
$importance /= $total; |
|
225
|
|
|
}); |
|
226
|
|
|
arsort($this->featureImportances); |
|
227
|
|
|
} |
|
228
|
|
|
|
|
229
|
|
|
return $this->featureImportances; |
|
230
|
|
|
} |
|
231
|
|
|
|
|
232
|
|
|
protected function getSplitLeaf(array $records, int $depth = 0): DecisionTreeLeaf |
|
233
|
|
|
{ |
|
234
|
|
|
$split = $this->getBestSplit($records); |
|
235
|
|
|
$split->level = $depth; |
|
236
|
|
|
if ($this->actualDepth < $depth) { |
|
237
|
|
|
$this->actualDepth = $depth; |
|
238
|
|
|
} |
|
239
|
|
|
|
|
240
|
|
|
// Traverse all records to see if all records belong to the same class, |
|
241
|
|
|
// otherwise group the records so that we can classify the leaf |
|
242
|
|
|
// in case maximum depth is reached |
|
243
|
|
|
$leftRecords = []; |
|
244
|
|
|
$rightRecords = []; |
|
245
|
|
|
$remainingTargets = []; |
|
246
|
|
|
$prevRecord = null; |
|
247
|
|
|
$allSame = true; |
|
248
|
|
|
|
|
249
|
|
|
foreach ($records as $recordNo) { |
|
250
|
|
|
// Check if the previous record is the same with the current one |
|
251
|
|
|
$record = $this->samples[$recordNo]; |
|
252
|
|
|
if ($prevRecord !== null && $prevRecord != $record) { |
|
253
|
|
|
$allSame = false; |
|
254
|
|
|
} |
|
255
|
|
|
|
|
256
|
|
|
$prevRecord = $record; |
|
257
|
|
|
|
|
258
|
|
|
// According to the split criteron, this record will |
|
259
|
|
|
// belong to either left or the right side in the next split |
|
260
|
|
|
if ($split->evaluate($record)) { |
|
261
|
|
|
$leftRecords[] = $recordNo; |
|
262
|
|
|
} else { |
|
263
|
|
|
$rightRecords[] = $recordNo; |
|
264
|
|
|
} |
|
265
|
|
|
|
|
266
|
|
|
// Group remaining targets |
|
267
|
|
|
$target = $this->targets[$recordNo]; |
|
268
|
|
|
if (!array_key_exists($target, $remainingTargets)) { |
|
269
|
|
|
$remainingTargets[$target] = 1; |
|
270
|
|
|
} else { |
|
271
|
|
|
++$remainingTargets[$target]; |
|
272
|
|
|
} |
|
273
|
|
|
} |
|
274
|
|
|
|
|
275
|
|
|
if ($allSame || $depth >= $this->maxDepth || count($remainingTargets) === 1) { |
|
276
|
|
|
$split->isTerminal = true; |
|
277
|
|
|
arsort($remainingTargets); |
|
278
|
|
|
$split->classValue = (string) key($remainingTargets); |
|
279
|
|
|
} else { |
|
280
|
|
|
if (isset($leftRecords[0])) { |
|
281
|
|
|
$split->leftLeaf = $this->getSplitLeaf($leftRecords, $depth + 1); |
|
282
|
|
|
} |
|
283
|
|
|
|
|
284
|
|
|
if (isset($rightRecords[0])) { |
|
285
|
|
|
$split->rightLeaf = $this->getSplitLeaf($rightRecords, $depth + 1); |
|
286
|
|
|
} |
|
287
|
|
|
} |
|
288
|
|
|
|
|
289
|
|
|
return $split; |
|
290
|
|
|
} |
|
291
|
|
|
|
|
292
|
|
|
protected function getBestSplit(array $records): DecisionTreeLeaf |
|
293
|
|
|
{ |
|
294
|
|
|
$targets = array_intersect_key($this->targets, array_flip($records)); |
|
295
|
|
|
$samples = (array) array_combine( |
|
296
|
|
|
$records, |
|
297
|
|
|
$this->preprocess(array_intersect_key($this->samples, array_flip($records))) |
|
298
|
|
|
); |
|
299
|
|
|
$bestGiniVal = 1; |
|
300
|
|
|
$bestSplit = null; |
|
301
|
|
|
$features = $this->getSelectedFeatures(); |
|
302
|
|
|
foreach ($features as $i) { |
|
303
|
|
|
$colValues = []; |
|
304
|
|
|
foreach ($samples as $index => $row) { |
|
305
|
|
|
$colValues[$index] = $row[$i]; |
|
306
|
|
|
} |
|
307
|
|
|
|
|
308
|
|
|
$counts = array_count_values($colValues); |
|
309
|
|
|
arsort($counts); |
|
310
|
|
|
$baseValue = key($counts); |
|
311
|
|
|
if ($baseValue === null) { |
|
312
|
|
|
continue; |
|
313
|
|
|
} |
|
314
|
|
|
|
|
315
|
|
|
$gini = $this->getGiniIndex($baseValue, $colValues, $targets); |
|
316
|
|
|
if ($bestSplit === null || $bestGiniVal > $gini) { |
|
317
|
|
|
$split = new DecisionTreeLeaf(); |
|
318
|
|
|
$split->value = $baseValue; |
|
319
|
|
|
$split->giniIndex = $gini; |
|
320
|
|
|
$split->columnIndex = $i; |
|
321
|
|
|
$split->isContinuous = $this->columnTypes[$i] === self::CONTINUOUS; |
|
322
|
|
|
$split->records = $records; |
|
323
|
|
|
|
|
324
|
|
|
// If a numeric column is to be selected, then |
|
325
|
|
|
// the original numeric value and the selected operator |
|
326
|
|
|
// will also be saved into the leaf for future access |
|
327
|
|
|
if ($this->columnTypes[$i] === self::CONTINUOUS) { |
|
328
|
|
|
$matches = []; |
|
329
|
|
|
preg_match("/^([<>=]{1,2})\s*(.*)/", (string) $split->value, $matches); |
|
330
|
|
|
$split->operator = $matches[1]; |
|
331
|
|
|
$split->numericValue = (float) $matches[2]; |
|
332
|
|
|
} |
|
333
|
|
|
|
|
334
|
|
|
$bestSplit = $split; |
|
335
|
|
|
$bestGiniVal = $gini; |
|
336
|
|
|
} |
|
337
|
|
|
} |
|
338
|
|
|
|
|
339
|
|
|
return $bestSplit; |
|
|
|
|
|
|
340
|
|
|
} |
|
341
|
|
|
|
|
342
|
|
|
/** |
|
343
|
|
|
* Returns available features/columns to the tree for the decision making |
|
344
|
|
|
* process. <br> |
|
345
|
|
|
* |
|
346
|
|
|
* If a number is given with setNumFeatures() method, then a random selection |
|
347
|
|
|
* of features up to this number is returned. <br> |
|
348
|
|
|
* |
|
349
|
|
|
* If some features are manually selected by use of setSelectedFeatures(), |
|
350
|
|
|
* then only these features are returned <br> |
|
351
|
|
|
* |
|
352
|
|
|
* If any of above methods were not called beforehand, then all features |
|
353
|
|
|
* are returned by default. |
|
354
|
|
|
*/ |
|
355
|
|
|
protected function getSelectedFeatures(): array |
|
356
|
|
|
{ |
|
357
|
|
|
$allFeatures = range(0, $this->featureCount - 1); |
|
358
|
|
|
if ($this->numUsableFeatures === 0 && count($this->selectedFeatures) === 0) { |
|
359
|
|
|
return $allFeatures; |
|
360
|
|
|
} |
|
361
|
|
|
|
|
362
|
|
|
if (count($this->selectedFeatures) > 0) { |
|
363
|
|
|
return $this->selectedFeatures; |
|
364
|
|
|
} |
|
365
|
|
|
|
|
366
|
|
|
$numFeatures = $this->numUsableFeatures; |
|
367
|
|
|
if ($numFeatures > $this->featureCount) { |
|
368
|
|
|
$numFeatures = $this->featureCount; |
|
369
|
|
|
} |
|
370
|
|
|
|
|
371
|
|
|
shuffle($allFeatures); |
|
372
|
|
|
$selectedFeatures = array_slice($allFeatures, 0, $numFeatures); |
|
373
|
|
|
sort($selectedFeatures); |
|
374
|
|
|
|
|
375
|
|
|
return $selectedFeatures; |
|
376
|
|
|
} |
|
377
|
|
|
|
|
378
|
|
|
protected function preprocess(array $samples): array |
|
379
|
|
|
{ |
|
380
|
|
|
// Detect and convert continuous data column values into |
|
381
|
|
|
// discrete values by using the median as a threshold value |
|
382
|
|
|
$columns = []; |
|
383
|
|
|
for ($i = 0; $i < $this->featureCount; ++$i) { |
|
384
|
|
|
$values = array_column($samples, $i); |
|
385
|
|
|
if ($this->columnTypes[$i] == self::CONTINUOUS) { |
|
386
|
|
|
$median = Mean::median($values); |
|
387
|
|
|
foreach ($values as &$value) { |
|
388
|
|
|
if ($value <= $median) { |
|
389
|
|
|
$value = "<= ${median}"; |
|
390
|
|
|
} else { |
|
391
|
|
|
$value = "> ${median}"; |
|
392
|
|
|
} |
|
393
|
|
|
} |
|
394
|
|
|
} |
|
395
|
|
|
|
|
396
|
|
|
$columns[] = $values; |
|
397
|
|
|
} |
|
398
|
|
|
|
|
399
|
|
|
// Below method is a strange yet very simple & efficient method |
|
400
|
|
|
// to get the transpose of a 2D array |
|
401
|
|
|
return array_map(null, ...$columns); |
|
402
|
|
|
} |
|
403
|
|
|
|
|
404
|
|
|
protected static function isCategoricalColumn(array $columnValues): bool |
|
405
|
|
|
{ |
|
406
|
|
|
$count = count($columnValues); |
|
407
|
|
|
|
|
408
|
|
|
// There are two main indicators that *may* show whether a |
|
409
|
|
|
// column is composed of discrete set of values: |
|
410
|
|
|
// 1- Column may contain string values and non-float values |
|
411
|
|
|
// 2- Number of unique values in the column is only a small fraction of |
|
412
|
|
|
// all values in that column (Lower than or equal to %20 of all values) |
|
413
|
|
|
$numericValues = array_filter($columnValues, 'is_numeric'); |
|
414
|
|
|
$floatValues = array_filter($columnValues, 'is_float'); |
|
415
|
|
|
if (count($floatValues) > 0) { |
|
416
|
|
|
return false; |
|
417
|
|
|
} |
|
418
|
|
|
|
|
419
|
|
|
if (count($numericValues) !== $count) { |
|
420
|
|
|
return true; |
|
421
|
|
|
} |
|
422
|
|
|
|
|
423
|
|
|
$distinctValues = array_count_values($columnValues); |
|
424
|
|
|
|
|
425
|
|
|
return count($distinctValues) <= $count / 5; |
|
426
|
|
|
} |
|
427
|
|
|
|
|
428
|
|
|
/** |
|
429
|
|
|
* Used to set predefined features to consider while deciding which column to use for a split |
|
430
|
|
|
*/ |
|
431
|
|
|
protected function setSelectedFeatures(array $selectedFeatures): void |
|
432
|
|
|
{ |
|
433
|
|
|
$this->selectedFeatures = $selectedFeatures; |
|
434
|
|
|
} |
|
435
|
|
|
|
|
436
|
|
|
/** |
|
437
|
|
|
* Collects and returns an array of internal nodes that use the given |
|
438
|
|
|
* column as a split criterion |
|
439
|
|
|
*/ |
|
440
|
|
|
protected function getSplitNodesByColumn(int $column, DecisionTreeLeaf $node): array |
|
441
|
|
|
{ |
|
442
|
|
|
if ($node->isTerminal) { |
|
443
|
|
|
return []; |
|
444
|
|
|
} |
|
445
|
|
|
|
|
446
|
|
|
$nodes = []; |
|
447
|
|
|
if ($node->columnIndex === $column) { |
|
448
|
|
|
$nodes[] = $node; |
|
449
|
|
|
} |
|
450
|
|
|
|
|
451
|
|
|
$lNodes = []; |
|
452
|
|
|
$rNodes = []; |
|
453
|
|
|
if ($node->leftLeaf !== null) { |
|
454
|
|
|
$lNodes = $this->getSplitNodesByColumn($column, $node->leftLeaf); |
|
455
|
|
|
} |
|
456
|
|
|
|
|
457
|
|
|
if ($node->rightLeaf !== null) { |
|
458
|
|
|
$rNodes = $this->getSplitNodesByColumn($column, $node->rightLeaf); |
|
459
|
|
|
} |
|
460
|
|
|
|
|
461
|
|
|
return array_merge($nodes, $lNodes, $rNodes); |
|
462
|
|
|
} |
|
463
|
|
|
|
|
464
|
|
|
/** |
|
465
|
|
|
* @return mixed |
|
466
|
|
|
*/ |
|
467
|
|
|
protected function predictSample(array $sample) |
|
468
|
|
|
{ |
|
469
|
|
|
$node = $this->tree; |
|
470
|
|
|
do { |
|
471
|
|
|
if ($node->isTerminal) { |
|
472
|
|
|
return $node->classValue; |
|
473
|
|
|
} |
|
474
|
|
|
|
|
475
|
|
|
if ($node->evaluate($sample)) { |
|
476
|
|
|
$node = $node->leftLeaf; |
|
477
|
|
|
} else { |
|
478
|
|
|
$node = $node->rightLeaf; |
|
479
|
|
|
} |
|
480
|
|
|
} while ($node); |
|
481
|
|
|
|
|
482
|
|
|
return $this->labels[0]; |
|
483
|
|
|
} |
|
484
|
|
|
} |
|
485
|
|
|
|