|
1
|
|
|
<?php |
|
2
|
|
|
|
|
3
|
|
|
declare(strict_types=1); |
|
4
|
|
|
|
|
5
|
|
|
namespace Phpml\Math\Statistic; |
|
6
|
|
|
|
|
7
|
|
|
use Phpml\Exception\InvalidArgumentException; |
|
8
|
|
|
|
|
9
|
|
|
class Covariance |
|
10
|
|
|
{ |
|
11
|
|
|
/** |
|
12
|
|
|
* Calculates covariance from two given arrays, x and y, respectively |
|
13
|
|
|
* |
|
14
|
|
|
* @throws InvalidArgumentException |
|
15
|
|
|
*/ |
|
16
|
|
|
public static function fromXYArrays(array $x, array $y, bool $sample = true, ?float $meanX = null, ?float $meanY = null): float |
|
17
|
|
|
{ |
|
18
|
|
|
$n = count($x); |
|
19
|
|
|
if ($n === 0 || count($y) === 0) { |
|
20
|
|
|
throw new InvalidArgumentException('The array has zero elements'); |
|
21
|
|
|
} |
|
22
|
|
|
|
|
23
|
|
|
if ($sample && $n === 1) { |
|
24
|
|
|
throw new InvalidArgumentException('The array must have at least 2 elements'); |
|
25
|
|
|
} |
|
26
|
|
|
|
|
27
|
|
|
if ($meanX === null) { |
|
28
|
|
|
$meanX = Mean::arithmetic($x); |
|
29
|
|
|
} |
|
30
|
|
|
|
|
31
|
|
|
if ($meanY === null) { |
|
32
|
|
|
$meanY = Mean::arithmetic($y); |
|
33
|
|
|
} |
|
34
|
|
|
|
|
35
|
|
|
$sum = 0.0; |
|
36
|
|
|
foreach ($x as $index => $xi) { |
|
37
|
|
|
$yi = $y[$index]; |
|
38
|
|
|
$sum += ($xi - $meanX) * ($yi - $meanY); |
|
39
|
|
|
} |
|
40
|
|
|
|
|
41
|
|
|
if ($sample) { |
|
42
|
|
|
--$n; |
|
43
|
|
|
} |
|
44
|
|
|
|
|
45
|
|
|
return $sum / $n; |
|
46
|
|
|
} |
|
47
|
|
|
|
|
48
|
|
|
/** |
|
49
|
|
|
* Calculates covariance of two dimensions, i and k in the given data. |
|
50
|
|
|
* |
|
51
|
|
|
* @throws InvalidArgumentException |
|
52
|
|
|
* @throws \Exception |
|
53
|
|
|
*/ |
|
54
|
|
|
public static function fromDataset(array $data, int $i, int $k, bool $sample = true, ?float $meanX = null, ?float $meanY = null): float |
|
55
|
|
|
{ |
|
56
|
|
|
if (count($data) === 0) { |
|
57
|
|
|
throw new InvalidArgumentException('The array has zero elements'); |
|
58
|
|
|
} |
|
59
|
|
|
|
|
60
|
|
|
$n = count($data); |
|
61
|
|
|
if ($sample && $n === 1) { |
|
62
|
|
|
throw new InvalidArgumentException('The array must have at least 2 elements'); |
|
63
|
|
|
} |
|
64
|
|
|
|
|
65
|
|
|
if ($i < 0 || $k < 0 || $i >= $n || $k >= $n) { |
|
66
|
|
|
throw new InvalidArgumentException('Given indices i and k do not match with the dimensionality of data'); |
|
67
|
|
|
} |
|
68
|
|
|
|
|
69
|
|
|
if ($meanX === null || $meanY === null) { |
|
70
|
|
|
$x = array_column($data, $i); |
|
71
|
|
|
$y = array_column($data, $k); |
|
72
|
|
|
|
|
73
|
|
|
$meanX = Mean::arithmetic($x); |
|
74
|
|
|
$meanY = Mean::arithmetic($y); |
|
75
|
|
|
$sum = 0.0; |
|
76
|
|
|
foreach ($x as $index => $xi) { |
|
77
|
|
|
$yi = $y[$index]; |
|
78
|
|
|
$sum += ($xi - $meanX) * ($yi - $meanY); |
|
79
|
|
|
} |
|
80
|
|
|
} else { |
|
81
|
|
|
// In the case, whole dataset given along with dimension indices, i and k, |
|
82
|
|
|
// we would like to avoid getting column data with array_column and operate |
|
83
|
|
|
// over this extra copy of column data for memory efficiency purposes. |
|
84
|
|
|
// |
|
85
|
|
|
// Instead we traverse through the whole data and get what we actually need |
|
86
|
|
|
// without copying the data. This way, memory use will be reduced |
|
87
|
|
|
// with a slight cost of CPU utilization. |
|
88
|
|
|
$sum = 0.0; |
|
89
|
|
|
foreach ($data as $row) { |
|
90
|
|
|
$val = [0, 0]; |
|
91
|
|
|
foreach ($row as $index => $col) { |
|
92
|
|
|
if ($index == $i) { |
|
93
|
|
|
$val[0] = $col - $meanX; |
|
94
|
|
|
} |
|
95
|
|
|
|
|
96
|
|
|
if ($index == $k) { |
|
97
|
|
|
$val[1] = $col - $meanY; |
|
98
|
|
|
} |
|
99
|
|
|
} |
|
100
|
|
|
|
|
101
|
|
|
$sum += $val[0] * $val[1]; |
|
102
|
|
|
} |
|
103
|
|
|
} |
|
104
|
|
|
|
|
105
|
|
|
if ($sample) { |
|
106
|
|
|
--$n; |
|
107
|
|
|
} |
|
108
|
|
|
|
|
109
|
|
|
return $sum / $n; |
|
110
|
|
|
} |
|
111
|
|
|
|
|
112
|
|
|
/** |
|
113
|
|
|
* Returns the covariance matrix of n-dimensional data |
|
114
|
|
|
* |
|
115
|
|
|
* @param array|null $means |
|
116
|
|
|
*/ |
|
117
|
|
|
public static function covarianceMatrix(array $data, ?array $means = null): array |
|
118
|
|
|
{ |
|
119
|
|
|
$n = count($data[0]); |
|
120
|
|
|
|
|
121
|
|
|
if ($means === null) { |
|
122
|
|
|
$means = []; |
|
123
|
|
|
for ($i = 0; $i < $n; ++$i) { |
|
124
|
|
|
$means[] = Mean::arithmetic(array_column($data, $i)); |
|
125
|
|
|
} |
|
126
|
|
|
} |
|
127
|
|
|
|
|
128
|
|
|
$cov = []; |
|
129
|
|
|
for ($i = 0; $i < $n; ++$i) { |
|
130
|
|
|
for ($k = 0; $k < $n; ++$k) { |
|
131
|
|
|
if ($i > $k) { |
|
132
|
|
|
$cov[$i][$k] = $cov[$k][$i]; |
|
133
|
|
|
} else { |
|
134
|
|
|
$cov[$i][$k] = self::fromDataset( |
|
135
|
|
|
$data, |
|
136
|
|
|
$i, |
|
137
|
|
|
$k, |
|
138
|
|
|
true, |
|
139
|
|
|
$means[$i], |
|
140
|
|
|
$means[$k] |
|
141
|
|
|
); |
|
142
|
|
|
} |
|
143
|
|
|
} |
|
144
|
|
|
} |
|
145
|
|
|
|
|
146
|
|
|
return $cov; |
|
147
|
|
|
} |
|
148
|
|
|
} |
|
149
|
|
|
|