|
1
|
|
|
<?php |
|
2
|
|
|
|
|
3
|
|
|
declare(strict_types=1); |
|
4
|
|
|
|
|
5
|
|
|
namespace Phpml\Helper\Optimizer; |
|
6
|
|
|
|
|
7
|
|
|
use Closure; |
|
8
|
|
|
|
|
9
|
|
|
/** |
|
10
|
|
|
* Conjugate Gradient method to solve a non-linear f(x) with respect to unknown x |
|
11
|
|
|
* See https://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient_method) |
|
12
|
|
|
* |
|
13
|
|
|
* The method applied below is explained in the below document in a practical manner |
|
14
|
|
|
* - http://web.cs.iastate.edu/~cs577/handouts/conjugate-gradient.pdf |
|
15
|
|
|
* |
|
16
|
|
|
* However it is compliant with the general Conjugate Gradient method with |
|
17
|
|
|
* Fletcher-Reeves update method. Note that, the f(x) is assumed to be one-dimensional |
|
18
|
|
|
* and one gradient is utilized for all dimensions in the given data. |
|
19
|
|
|
*/ |
|
20
|
|
|
class ConjugateGradient extends GD |
|
21
|
|
|
{ |
|
22
|
|
|
public function runOptimization(array $samples, array $targets, Closure $gradientCb): array |
|
23
|
|
|
{ |
|
24
|
|
|
$this->samples = $samples; |
|
25
|
|
|
$this->targets = $targets; |
|
26
|
|
|
$this->gradientCb = $gradientCb; |
|
27
|
|
|
$this->sampleCount = count($samples); |
|
28
|
|
|
$this->costValues = []; |
|
29
|
|
|
|
|
30
|
|
|
$d = MP::muls($this->gradient($this->theta), -1); |
|
31
|
|
|
|
|
32
|
|
|
for ($i = 0; $i < $this->maxIterations; ++$i) { |
|
33
|
|
|
// Obtain α that minimizes f(θ + α.d) |
|
34
|
|
|
$alpha = $this->getAlpha($d); |
|
35
|
|
|
|
|
36
|
|
|
// θ(k+1) = θ(k) + α.d |
|
37
|
|
|
$thetaNew = $this->getNewTheta($alpha, $d); |
|
38
|
|
|
|
|
39
|
|
|
// β = ||∇f(x(k+1))||² ∕ ||∇f(x(k))||² |
|
40
|
|
|
$beta = $this->getBeta($thetaNew); |
|
41
|
|
|
|
|
42
|
|
|
// d(k+1) =–∇f(x(k+1)) + β(k).d(k) |
|
43
|
|
|
$d = $this->getNewDirection($thetaNew, $beta, $d); |
|
44
|
|
|
|
|
45
|
|
|
// Save values for the next iteration |
|
46
|
|
|
$oldTheta = $this->theta; |
|
47
|
|
|
$this->costValues[] = $this->cost($thetaNew); |
|
48
|
|
|
|
|
49
|
|
|
$this->theta = $thetaNew; |
|
50
|
|
|
if ($this->enableEarlyStop && $this->earlyStop($oldTheta)) { |
|
51
|
|
|
break; |
|
52
|
|
|
} |
|
53
|
|
|
} |
|
54
|
|
|
|
|
55
|
|
|
$this->clear(); |
|
56
|
|
|
|
|
57
|
|
|
return $this->theta; |
|
58
|
|
|
} |
|
59
|
|
|
|
|
60
|
|
|
/** |
|
61
|
|
|
* Executes the callback function for the problem and returns |
|
62
|
|
|
* sum of the gradient for all samples & targets. |
|
63
|
|
|
*/ |
|
64
|
|
|
protected function gradient(array $theta): array |
|
65
|
|
|
{ |
|
66
|
|
|
[, $updates, $penalty] = parent::gradient($theta); |
|
67
|
|
|
|
|
68
|
|
|
// Calculate gradient for each dimension |
|
69
|
|
|
$gradient = []; |
|
70
|
|
|
for ($i = 0; $i <= $this->dimensions; ++$i) { |
|
71
|
|
|
if ($i === 0) { |
|
72
|
|
|
$gradient[$i] = array_sum($updates); |
|
73
|
|
|
} else { |
|
74
|
|
|
$col = array_column($this->samples, $i - 1); |
|
75
|
|
|
$error = 0; |
|
76
|
|
|
foreach ($col as $index => $val) { |
|
77
|
|
|
$error += $val * $updates[$index]; |
|
78
|
|
|
} |
|
79
|
|
|
|
|
80
|
|
|
$gradient[$i] = $error + $penalty * $theta[$i]; |
|
81
|
|
|
} |
|
82
|
|
|
} |
|
83
|
|
|
|
|
84
|
|
|
return $gradient; |
|
85
|
|
|
} |
|
86
|
|
|
|
|
87
|
|
|
/** |
|
88
|
|
|
* Returns the value of f(x) for given solution |
|
89
|
|
|
*/ |
|
90
|
|
|
protected function cost(array $theta): float |
|
91
|
|
|
{ |
|
92
|
|
|
[$cost] = parent::gradient($theta); |
|
93
|
|
|
|
|
94
|
|
|
return array_sum($cost) / (int) $this->sampleCount; |
|
95
|
|
|
} |
|
96
|
|
|
|
|
97
|
|
|
/** |
|
98
|
|
|
* Calculates alpha that minimizes the function f(θ + α.d) |
|
99
|
|
|
* by performing a line search that does not rely upon the derivation. |
|
100
|
|
|
* |
|
101
|
|
|
* There are several alternatives for this function. For now, we |
|
102
|
|
|
* prefer a method inspired from the bisection method for its simplicity. |
|
103
|
|
|
* This algorithm attempts to find an optimum alpha value between 0.0001 and 0.01 |
|
104
|
|
|
* |
|
105
|
|
|
* Algorithm as follows: |
|
106
|
|
|
* a) Probe a small alpha (0.0001) and calculate cost function |
|
107
|
|
|
* b) Probe a larger alpha (0.01) and calculate cost function |
|
108
|
|
|
* b-1) If cost function decreases, continue enlarging alpha |
|
109
|
|
|
* b-2) If cost function increases, take the midpoint and try again |
|
110
|
|
|
*/ |
|
111
|
|
|
protected function getAlpha(array $d): float |
|
112
|
|
|
{ |
|
113
|
|
|
$small = MP::muls($d, 0.0001); |
|
114
|
|
|
$large = MP::muls($d, 0.01); |
|
115
|
|
|
|
|
116
|
|
|
// Obtain θ + α.d for two initial values, x0 and x1 |
|
117
|
|
|
$x0 = MP::add($this->theta, $small); |
|
118
|
|
|
$x1 = MP::add($this->theta, $large); |
|
119
|
|
|
|
|
120
|
|
|
$epsilon = 0.0001; |
|
121
|
|
|
$iteration = 0; |
|
122
|
|
|
do { |
|
123
|
|
|
$fx1 = $this->cost($x1); |
|
124
|
|
|
$fx0 = $this->cost($x0); |
|
125
|
|
|
|
|
126
|
|
|
// If the difference between two values is small enough |
|
127
|
|
|
// then break the loop |
|
128
|
|
|
if (abs($fx1 - $fx0) <= $epsilon) { |
|
129
|
|
|
break; |
|
130
|
|
|
} |
|
131
|
|
|
|
|
132
|
|
|
if ($fx1 < $fx0) { |
|
133
|
|
|
$x0 = $x1; |
|
134
|
|
|
$x1 = MP::adds($x1, 0.01); // Enlarge second |
|
135
|
|
|
} else { |
|
136
|
|
|
$x1 = MP::divs(MP::add($x1, $x0), 2.0); |
|
137
|
|
|
} // Get to the midpoint |
|
138
|
|
|
|
|
139
|
|
|
$error = $fx1 / $this->dimensions; |
|
140
|
|
|
} while ($error <= $epsilon || $iteration++ < 10); |
|
141
|
|
|
|
|
142
|
|
|
// Return α = θ / d |
|
143
|
|
|
// For accuracy, choose a dimension which maximize |d[i]| |
|
144
|
|
|
$imax = 0; |
|
145
|
|
|
for ($i = 1; $i <= $this->dimensions; ++$i) { |
|
146
|
|
|
if (abs($d[$i]) > abs($d[$imax])) { |
|
147
|
|
|
$imax = $i; |
|
148
|
|
|
} |
|
149
|
|
|
} |
|
150
|
|
|
|
|
151
|
|
|
if ($d[$imax] == 0) { |
|
152
|
|
|
return $x1[$imax] - $this->theta[$imax]; |
|
153
|
|
|
} |
|
154
|
|
|
|
|
155
|
|
|
return ($x1[$imax] - $this->theta[$imax]) / $d[$imax]; |
|
156
|
|
|
} |
|
157
|
|
|
|
|
158
|
|
|
/** |
|
159
|
|
|
* Calculates new set of solutions with given alpha (for each θ(k)) and |
|
160
|
|
|
* gradient direction. |
|
161
|
|
|
* |
|
162
|
|
|
* θ(k+1) = θ(k) + α.d |
|
163
|
|
|
*/ |
|
164
|
|
|
protected function getNewTheta(float $alpha, array $d): array |
|
165
|
|
|
{ |
|
166
|
|
|
return MP::add($this->theta, MP::muls($d, $alpha)); |
|
167
|
|
|
} |
|
168
|
|
|
|
|
169
|
|
|
/** |
|
170
|
|
|
* Calculates new beta (β) for given set of solutions by using |
|
171
|
|
|
* Fletcher–Reeves method. |
|
172
|
|
|
* |
|
173
|
|
|
* β = ||f(x(k+1))||² ∕ ||f(x(k))||² |
|
174
|
|
|
* |
|
175
|
|
|
* See: |
|
176
|
|
|
* R. Fletcher and C. M. Reeves, "Function minimization by conjugate gradients", Comput. J. 7 (1964), 149–154. |
|
177
|
|
|
*/ |
|
178
|
|
|
protected function getBeta(array $newTheta): float |
|
179
|
|
|
{ |
|
180
|
|
|
$gNew = $this->gradient($newTheta); |
|
181
|
|
|
$gOld = $this->gradient($this->theta); |
|
182
|
|
|
$dNew = 0; |
|
183
|
|
|
$dOld = 1e-100; |
|
184
|
|
|
for ($i = 0; $i <= $this->dimensions; ++$i) { |
|
185
|
|
|
$dNew += $gNew[$i] ** 2; |
|
186
|
|
|
$dOld += $gOld[$i] ** 2; |
|
187
|
|
|
} |
|
188
|
|
|
|
|
189
|
|
|
return $dNew / $dOld; |
|
190
|
|
|
} |
|
191
|
|
|
|
|
192
|
|
|
/** |
|
193
|
|
|
* Calculates the new conjugate direction |
|
194
|
|
|
* |
|
195
|
|
|
* d(k+1) =–∇f(x(k+1)) + β(k).d(k) |
|
196
|
|
|
*/ |
|
197
|
|
|
protected function getNewDirection(array $theta, float $beta, array $d): array |
|
198
|
|
|
{ |
|
199
|
|
|
$grad = $this->gradient($theta); |
|
200
|
|
|
|
|
201
|
|
|
return MP::add(MP::muls($grad, -1), MP::muls($d, $beta)); |
|
202
|
|
|
} |
|
203
|
|
|
} |
|
204
|
|
|
|
|
205
|
|
|
/** |
|
206
|
|
|
* Handles element-wise vector operations between vector-vector |
|
207
|
|
|
* and vector-scalar variables |
|
208
|
|
|
*/ |
|
209
|
|
|
class MP |
|
210
|
|
|
{ |
|
211
|
|
|
/** |
|
212
|
|
|
* Element-wise <b>multiplication</b> of two vectors of the same size |
|
213
|
|
|
*/ |
|
214
|
|
|
public static function mul(array $m1, array $m2): array |
|
215
|
|
|
{ |
|
216
|
|
|
$res = []; |
|
217
|
|
|
foreach ($m1 as $i => $val) { |
|
218
|
|
|
$res[] = $val * $m2[$i]; |
|
219
|
|
|
} |
|
220
|
|
|
|
|
221
|
|
|
return $res; |
|
222
|
|
|
} |
|
223
|
|
|
|
|
224
|
|
|
/** |
|
225
|
|
|
* Element-wise <b>division</b> of two vectors of the same size |
|
226
|
|
|
*/ |
|
227
|
|
|
public static function div(array $m1, array $m2): array |
|
228
|
|
|
{ |
|
229
|
|
|
$res = []; |
|
230
|
|
|
foreach ($m1 as $i => $val) { |
|
231
|
|
|
$res[] = $val / $m2[$i]; |
|
232
|
|
|
} |
|
233
|
|
|
|
|
234
|
|
|
return $res; |
|
235
|
|
|
} |
|
236
|
|
|
|
|
237
|
|
|
/** |
|
238
|
|
|
* Element-wise <b>addition</b> of two vectors of the same size |
|
239
|
|
|
*/ |
|
240
|
|
|
public static function add(array $m1, array $m2, int $mag = 1): array |
|
241
|
|
|
{ |
|
242
|
|
|
$res = []; |
|
243
|
|
|
foreach ($m1 as $i => $val) { |
|
244
|
|
|
$res[] = $val + $mag * $m2[$i]; |
|
245
|
|
|
} |
|
246
|
|
|
|
|
247
|
|
|
return $res; |
|
248
|
|
|
} |
|
249
|
|
|
|
|
250
|
|
|
/** |
|
251
|
|
|
* Element-wise <b>subtraction</b> of two vectors of the same size |
|
252
|
|
|
*/ |
|
253
|
|
|
public static function sub(array $m1, array $m2): array |
|
254
|
|
|
{ |
|
255
|
|
|
return self::add($m1, $m2, -1); |
|
256
|
|
|
} |
|
257
|
|
|
|
|
258
|
|
|
/** |
|
259
|
|
|
* Element-wise <b>multiplication</b> of a vector with a scalar |
|
260
|
|
|
*/ |
|
261
|
|
|
public static function muls(array $m1, float $m2): array |
|
262
|
|
|
{ |
|
263
|
|
|
$res = []; |
|
264
|
|
|
foreach ($m1 as $val) { |
|
265
|
|
|
$res[] = $val * $m2; |
|
266
|
|
|
} |
|
267
|
|
|
|
|
268
|
|
|
return $res; |
|
269
|
|
|
} |
|
270
|
|
|
|
|
271
|
|
|
/** |
|
272
|
|
|
* Element-wise <b>division</b> of a vector with a scalar |
|
273
|
|
|
*/ |
|
274
|
|
|
public static function divs(array $m1, float $m2): array |
|
275
|
|
|
{ |
|
276
|
|
|
$res = []; |
|
277
|
|
|
foreach ($m1 as $val) { |
|
278
|
|
|
$res[] = $val / ($m2 + 1e-32); |
|
279
|
|
|
} |
|
280
|
|
|
|
|
281
|
|
|
return $res; |
|
282
|
|
|
} |
|
283
|
|
|
|
|
284
|
|
|
/** |
|
285
|
|
|
* Element-wise <b>addition</b> of a vector with a scalar |
|
286
|
|
|
*/ |
|
287
|
|
|
public static function adds(array $m1, float $m2, int $mag = 1): array |
|
288
|
|
|
{ |
|
289
|
|
|
$res = []; |
|
290
|
|
|
foreach ($m1 as $val) { |
|
291
|
|
|
$res[] = $val + $mag * $m2; |
|
292
|
|
|
} |
|
293
|
|
|
|
|
294
|
|
|
return $res; |
|
295
|
|
|
} |
|
296
|
|
|
|
|
297
|
|
|
/** |
|
298
|
|
|
* Element-wise <b>subtraction</b> of a vector with a scalar |
|
299
|
|
|
*/ |
|
300
|
|
|
public static function subs(array $m1, float $m2): array |
|
301
|
|
|
{ |
|
302
|
|
|
return self::adds($m1, $m2, -1); |
|
303
|
|
|
} |
|
304
|
|
|
} |
|
305
|
|
|
|