|
1
|
|
|
<?php |
|
2
|
|
|
|
|
3
|
|
|
declare(strict_types=1); |
|
4
|
|
|
|
|
5
|
|
|
namespace Phpml\DimensionReduction; |
|
6
|
|
|
|
|
7
|
|
|
use Phpml\Math\LinearAlgebra\EigenvalueDecomposition; |
|
8
|
|
|
use Phpml\Math\Matrix; |
|
9
|
|
|
|
|
10
|
|
|
/** |
|
11
|
|
|
* Class to compute eigen pairs (values & vectors) of a given matrix |
|
12
|
|
|
* with the consideration of numFeatures or totalVariance to be preserved |
|
13
|
|
|
* |
|
14
|
|
|
* @author hp |
|
15
|
|
|
*/ |
|
16
|
|
|
abstract class EigenTransformerBase |
|
17
|
|
|
{ |
|
18
|
|
|
/** |
|
19
|
|
|
* Total variance to be conserved after the reduction |
|
20
|
|
|
* |
|
21
|
|
|
* @var float |
|
22
|
|
|
*/ |
|
23
|
|
|
public $totalVariance = 0.9; |
|
24
|
|
|
|
|
25
|
|
|
/** |
|
26
|
|
|
* Number of features to be preserved after the reduction |
|
27
|
|
|
* |
|
28
|
|
|
* @var int |
|
29
|
|
|
*/ |
|
30
|
|
|
public $numFeatures = null; |
|
31
|
|
|
|
|
32
|
|
|
/** |
|
33
|
|
|
* Top eigenvectors of the matrix |
|
34
|
|
|
* |
|
35
|
|
|
* @var array |
|
36
|
|
|
*/ |
|
37
|
|
|
protected $eigVectors = []; |
|
38
|
|
|
|
|
39
|
|
|
/** |
|
40
|
|
|
* Top eigenValues of the matrix |
|
41
|
|
|
* |
|
42
|
|
|
* @var array |
|
43
|
|
|
*/ |
|
44
|
|
|
protected $eigValues = []; |
|
45
|
|
|
|
|
46
|
|
|
/** |
|
47
|
|
|
* Calculates eigenValues and eigenVectors of the given matrix. Returns |
|
48
|
|
|
* top eigenVectors along with the largest eigenValues. The total explained variance |
|
49
|
|
|
* of these eigenVectors will be no less than desired $totalVariance value |
|
50
|
|
|
*/ |
|
51
|
|
|
protected function eigenDecomposition(array $matrix): void |
|
52
|
|
|
{ |
|
53
|
|
|
$eig = new EigenvalueDecomposition($matrix); |
|
54
|
|
|
$eigVals = $eig->getRealEigenvalues(); |
|
55
|
|
|
$eigVects = $eig->getEigenvectors(); |
|
56
|
|
|
|
|
57
|
|
|
$totalEigVal = array_sum($eigVals); |
|
58
|
|
|
// Sort eigenvalues in descending order |
|
59
|
|
|
arsort($eigVals); |
|
60
|
|
|
|
|
61
|
|
|
$explainedVar = 0.0; |
|
62
|
|
|
$vectors = []; |
|
63
|
|
|
$values = []; |
|
64
|
|
|
foreach ($eigVals as $i => $eigVal) { |
|
65
|
|
|
$explainedVar += $eigVal / $totalEigVal; |
|
66
|
|
|
$vectors[] = $eigVects[$i]; |
|
67
|
|
|
$values[] = $eigVal; |
|
68
|
|
|
|
|
69
|
|
|
if ($this->numFeatures !== null) { |
|
70
|
|
|
if (count($vectors) == $this->numFeatures) { |
|
71
|
|
|
break; |
|
72
|
|
|
} |
|
73
|
|
|
} else { |
|
74
|
|
|
if ($explainedVar >= $this->totalVariance) { |
|
75
|
|
|
break; |
|
76
|
|
|
} |
|
77
|
|
|
} |
|
78
|
|
|
} |
|
79
|
|
|
|
|
80
|
|
|
$this->eigValues = $values; |
|
81
|
|
|
$this->eigVectors = $vectors; |
|
82
|
|
|
} |
|
83
|
|
|
|
|
84
|
|
|
/** |
|
85
|
|
|
* Returns the reduced data |
|
86
|
|
|
*/ |
|
87
|
|
|
protected function reduce(array $data): array |
|
88
|
|
|
{ |
|
89
|
|
|
$m1 = new Matrix($data); |
|
90
|
|
|
$m2 = new Matrix($this->eigVectors); |
|
91
|
|
|
|
|
92
|
|
|
return $m1->multiply($m2->transpose())->toArray(); |
|
93
|
|
|
} |
|
94
|
|
|
} |
|
95
|
|
|
|