|
1
|
|
|
<?php |
|
2
|
|
|
|
|
3
|
|
|
declare(strict_types=1); |
|
4
|
|
|
|
|
5
|
|
|
namespace Phpml\Classification; |
|
6
|
|
|
|
|
7
|
|
|
use Phpml\Exception\InvalidArgumentException; |
|
8
|
|
|
use Phpml\Helper\Predictable; |
|
9
|
|
|
use Phpml\Helper\Trainable; |
|
10
|
|
|
use Phpml\Math\Statistic\Mean; |
|
11
|
|
|
use Phpml\Math\Statistic\StandardDeviation; |
|
12
|
|
|
|
|
13
|
|
|
class NaiveBayes implements Classifier |
|
14
|
|
|
{ |
|
15
|
|
|
use Trainable; |
|
16
|
|
|
use Predictable; |
|
17
|
|
|
|
|
18
|
|
|
public const CONTINUOS = 1; |
|
19
|
|
|
|
|
20
|
|
|
public const NOMINAL = 2; |
|
21
|
|
|
|
|
22
|
|
|
public const EPSILON = 1e-10; |
|
23
|
|
|
|
|
24
|
|
|
/** |
|
25
|
|
|
* @var array |
|
26
|
|
|
*/ |
|
27
|
|
|
private $std = []; |
|
28
|
|
|
|
|
29
|
|
|
/** |
|
30
|
|
|
* @var array |
|
31
|
|
|
*/ |
|
32
|
|
|
private $mean = []; |
|
33
|
|
|
|
|
34
|
|
|
/** |
|
35
|
|
|
* @var array |
|
36
|
|
|
*/ |
|
37
|
|
|
private $discreteProb = []; |
|
38
|
|
|
|
|
39
|
|
|
/** |
|
40
|
|
|
* @var array |
|
41
|
|
|
*/ |
|
42
|
|
|
private $dataType = []; |
|
43
|
|
|
|
|
44
|
|
|
/** |
|
45
|
|
|
* @var array |
|
46
|
|
|
*/ |
|
47
|
|
|
private $p = []; |
|
48
|
|
|
|
|
49
|
|
|
/** |
|
50
|
|
|
* @var int |
|
51
|
|
|
*/ |
|
52
|
|
|
private $sampleCount = 0; |
|
53
|
|
|
|
|
54
|
|
|
/** |
|
55
|
|
|
* @var int |
|
56
|
|
|
*/ |
|
57
|
|
|
private $featureCount = 0; |
|
58
|
|
|
|
|
59
|
|
|
/** |
|
60
|
|
|
* @var array |
|
61
|
|
|
*/ |
|
62
|
|
|
private $labels = []; |
|
63
|
|
|
|
|
64
|
|
|
public function train(array $samples, array $targets): void |
|
65
|
|
|
{ |
|
66
|
|
|
$this->samples = array_merge($this->samples, $samples); |
|
67
|
|
|
$this->targets = array_merge($this->targets, $targets); |
|
68
|
|
|
$this->sampleCount = count($this->samples); |
|
69
|
|
|
$this->featureCount = count($this->samples[0]); |
|
70
|
|
|
|
|
71
|
|
|
$this->labels = array_map('strval', array_flip(array_flip($this->targets))); |
|
72
|
|
|
foreach ($this->labels as $label) { |
|
73
|
|
|
$samples = $this->getSamplesByLabel($label); |
|
74
|
|
|
$this->p[$label] = count($samples) / $this->sampleCount; |
|
75
|
|
|
$this->calculateStatistics($label, $samples); |
|
76
|
|
|
} |
|
77
|
|
|
} |
|
78
|
|
|
|
|
79
|
|
|
/** |
|
80
|
|
|
* @return mixed |
|
81
|
|
|
*/ |
|
82
|
|
|
protected function predictSample(array $sample) |
|
83
|
|
|
{ |
|
84
|
|
|
// Use NaiveBayes assumption for each label using: |
|
85
|
|
|
// P(label|features) = P(label) * P(feature0|label) * P(feature1|label) .... P(featureN|label) |
|
86
|
|
|
// Then compare probability for each class to determine which label is most likely |
|
87
|
|
|
$predictions = []; |
|
88
|
|
|
foreach ($this->labels as $label) { |
|
89
|
|
|
$p = $this->p[$label]; |
|
90
|
|
|
for ($i = 0; $i < $this->featureCount; ++$i) { |
|
91
|
|
|
$Plf = $this->sampleProbability($sample, $i, $label); |
|
92
|
|
|
$p += $Plf; |
|
93
|
|
|
} |
|
94
|
|
|
|
|
95
|
|
|
$predictions[$label] = $p; |
|
96
|
|
|
} |
|
97
|
|
|
|
|
98
|
|
|
arsort($predictions, SORT_NUMERIC); |
|
99
|
|
|
reset($predictions); |
|
100
|
|
|
|
|
101
|
|
|
return key($predictions); |
|
102
|
|
|
} |
|
103
|
|
|
|
|
104
|
|
|
/** |
|
105
|
|
|
* Calculates vital statistics for each label & feature. Stores these |
|
106
|
|
|
* values in private array in order to avoid repeated calculation |
|
107
|
|
|
*/ |
|
108
|
|
|
private function calculateStatistics(string $label, array $samples): void |
|
109
|
|
|
{ |
|
110
|
|
|
$this->std[$label] = array_fill(0, $this->featureCount, 0); |
|
111
|
|
|
$this->mean[$label] = array_fill(0, $this->featureCount, 0); |
|
112
|
|
|
$this->dataType[$label] = array_fill(0, $this->featureCount, self::CONTINUOS); |
|
113
|
|
|
$this->discreteProb[$label] = array_fill(0, $this->featureCount, self::CONTINUOS); |
|
114
|
|
|
for ($i = 0; $i < $this->featureCount; ++$i) { |
|
115
|
|
|
// Get the values of nth column in the samples array |
|
116
|
|
|
// Mean::arithmetic is called twice, can be optimized |
|
117
|
|
|
$values = array_column($samples, $i); |
|
118
|
|
|
$numValues = count($values); |
|
119
|
|
|
// if the values contain non-numeric data, |
|
120
|
|
|
// then it should be treated as nominal/categorical/discrete column |
|
121
|
|
|
if ($values !== array_filter($values, 'is_numeric')) { |
|
122
|
|
|
$this->dataType[$label][$i] = self::NOMINAL; |
|
123
|
|
|
$this->discreteProb[$label][$i] = array_count_values($values); |
|
124
|
|
|
$db = &$this->discreteProb[$label][$i]; |
|
125
|
|
|
$db = array_map(function ($el) use ($numValues) { |
|
126
|
|
|
return $el / $numValues; |
|
127
|
|
|
}, $db); |
|
128
|
|
|
} else { |
|
129
|
|
|
$this->mean[$label][$i] = Mean::arithmetic($values); |
|
130
|
|
|
// Add epsilon in order to avoid zero stdev |
|
131
|
|
|
$this->std[$label][$i] = 1e-10 + StandardDeviation::population($values, false); |
|
132
|
|
|
} |
|
133
|
|
|
} |
|
134
|
|
|
} |
|
135
|
|
|
|
|
136
|
|
|
/** |
|
137
|
|
|
* Calculates the probability P(label|sample_n) |
|
138
|
|
|
*/ |
|
139
|
|
|
private function sampleProbability(array $sample, int $feature, string $label): float |
|
140
|
|
|
{ |
|
141
|
|
|
if (!isset($sample[$feature])) { |
|
142
|
|
|
throw new InvalidArgumentException('Missing feature. All samples must have equal number of features'); |
|
143
|
|
|
} |
|
144
|
|
|
|
|
145
|
|
|
$value = $sample[$feature]; |
|
146
|
|
|
if ($this->dataType[$label][$feature] == self::NOMINAL) { |
|
147
|
|
|
if (!isset($this->discreteProb[$label][$feature][$value]) || |
|
148
|
|
|
$this->discreteProb[$label][$feature][$value] == 0) { |
|
149
|
|
|
return self::EPSILON; |
|
150
|
|
|
} |
|
151
|
|
|
|
|
152
|
|
|
return $this->discreteProb[$label][$feature][$value]; |
|
153
|
|
|
} |
|
154
|
|
|
|
|
155
|
|
|
$std = $this->std[$label][$feature]; |
|
156
|
|
|
$mean = $this->mean[$label][$feature]; |
|
157
|
|
|
// Calculate the probability density by use of normal/Gaussian distribution |
|
158
|
|
|
// Ref: https://en.wikipedia.org/wiki/Normal_distribution |
|
159
|
|
|
// |
|
160
|
|
|
// In order to avoid numerical errors because of small or zero values, |
|
161
|
|
|
// some libraries adopt taking log of calculations such as |
|
162
|
|
|
// scikit-learn did. |
|
163
|
|
|
// (See : https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/naive_bayes.py) |
|
164
|
|
|
$pdf = -0.5 * log(2.0 * M_PI * $std * $std); |
|
165
|
|
|
$pdf -= 0.5 * (($value - $mean) ** 2) / ($std * $std); |
|
166
|
|
|
|
|
167
|
|
|
return $pdf; |
|
168
|
|
|
} |
|
169
|
|
|
|
|
170
|
|
|
/** |
|
171
|
|
|
* Return samples belonging to specific label |
|
172
|
|
|
*/ |
|
173
|
|
|
private function getSamplesByLabel(string $label): array |
|
174
|
|
|
{ |
|
175
|
|
|
$samples = []; |
|
176
|
|
|
for ($i = 0; $i < $this->sampleCount; ++$i) { |
|
177
|
|
|
if ($this->targets[$i] == $label) { |
|
178
|
|
|
$samples[] = $this->samples[$i]; |
|
179
|
|
|
} |
|
180
|
|
|
} |
|
181
|
|
|
|
|
182
|
|
|
return $samples; |
|
183
|
|
|
} |
|
184
|
|
|
} |
|
185
|
|
|
|