1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
# |
3
|
|
|
# Copyright 2011 Sybren A. Stüvel <[email protected]> |
4
|
|
|
# |
5
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
6
|
|
|
# you may not use this file except in compliance with the License. |
7
|
|
|
# You may obtain a copy of the License at |
8
|
|
|
# |
9
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
10
|
|
|
# |
11
|
|
|
# Unless required by applicable law or agreed to in writing, software |
12
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
13
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
14
|
|
|
# See the License for the specific language governing permissions and |
15
|
|
|
# limitations under the License. |
16
|
|
|
|
17
|
|
|
'''Numerical functions related to primes.''' |
18
|
|
|
|
19
|
|
|
__all__ = [ 'getprime', 'are_relatively_prime'] |
20
|
|
|
|
21
|
|
|
import rsa.randnum |
22
|
|
|
|
23
|
|
|
def gcd(p, q): |
24
|
|
|
"""Returns the greatest common divisor of p and q |
25
|
|
|
|
26
|
|
|
>>> gcd(48, 180) |
27
|
|
|
12 |
28
|
|
|
""" |
29
|
|
|
|
30
|
|
|
while q != 0: |
31
|
|
|
if p < q: (p,q) = (q,p) |
32
|
|
|
(p,q) = (q, p % q) |
33
|
|
|
return p |
34
|
|
|
|
35
|
|
|
|
36
|
|
View Code Duplication |
def jacobi(a, b): |
|
|
|
|
37
|
|
|
"""Calculates the value of the Jacobi symbol (a/b) where both a and b are |
38
|
|
|
positive integers, and b is odd |
39
|
|
|
""" |
40
|
|
|
|
41
|
|
|
if a == 0: return 0 |
42
|
|
|
result = 1 |
43
|
|
|
while a > 1: |
44
|
|
|
if a & 1: |
45
|
|
|
if ((a-1)*(b-1) >> 2) & 1: |
46
|
|
|
result = -result |
47
|
|
|
a, b = b % a, a |
48
|
|
|
else: |
49
|
|
|
if (((b * b) - 1) >> 3) & 1: |
50
|
|
|
result = -result |
51
|
|
|
a >>= 1 |
52
|
|
|
if a == 0: return 0 |
53
|
|
|
return result |
54
|
|
|
|
55
|
|
View Code Duplication |
def jacobi_witness(x, n): |
|
|
|
|
56
|
|
|
"""Returns False if n is an Euler pseudo-prime with base x, and |
57
|
|
|
True otherwise. |
58
|
|
|
""" |
59
|
|
|
|
60
|
|
|
j = jacobi(x, n) % n |
61
|
|
|
f = pow(x, (n - 1) // 2, n) |
62
|
|
|
|
63
|
|
|
if j == f: return False |
64
|
|
|
return True |
65
|
|
|
|
66
|
|
|
def randomized_primality_testing(n, k): |
67
|
|
|
"""Calculates whether n is composite (which is always correct) or |
68
|
|
|
prime (which is incorrect with error probability 2**-k) |
69
|
|
|
|
70
|
|
|
Returns False if the number is composite, and True if it's |
71
|
|
|
probably prime. |
72
|
|
|
""" |
73
|
|
|
|
74
|
|
|
# 50% of Jacobi-witnesses can report compositness of non-prime numbers |
75
|
|
|
|
76
|
|
|
for _ in range(k): |
77
|
|
|
x = rsa.randnum.randint(n-1) |
78
|
|
|
if jacobi_witness(x, n): return False |
79
|
|
|
|
80
|
|
|
return True |
81
|
|
|
|
82
|
|
|
def is_prime(number): |
83
|
|
|
"""Returns True if the number is prime, and False otherwise. |
84
|
|
|
|
85
|
|
|
>>> is_prime(42) |
86
|
|
|
False |
87
|
|
|
>>> is_prime(41) |
88
|
|
|
True |
89
|
|
|
""" |
90
|
|
|
|
91
|
|
|
return randomized_primality_testing(number, 6) |
92
|
|
|
|
93
|
|
|
def getprime(nbits): |
94
|
|
|
"""Returns a prime number that can be stored in 'nbits' bits. |
95
|
|
|
|
96
|
|
|
>>> p = getprime(128) |
97
|
|
|
>>> is_prime(p-1) |
98
|
|
|
False |
99
|
|
|
>>> is_prime(p) |
100
|
|
|
True |
101
|
|
|
>>> is_prime(p+1) |
102
|
|
|
False |
103
|
|
|
|
104
|
|
|
>>> from rsa import common |
105
|
|
|
>>> common.bit_size(p) <= 128 |
106
|
|
|
True |
107
|
|
|
|
108
|
|
|
""" |
109
|
|
|
|
110
|
|
|
while True: |
111
|
|
|
integer = rsa.randnum.read_random_int(nbits) |
112
|
|
|
|
113
|
|
|
# Make sure it's odd |
114
|
|
|
integer |= 1 |
115
|
|
|
|
116
|
|
|
# Test for primeness |
117
|
|
|
if is_prime(integer): |
118
|
|
|
return integer |
119
|
|
|
|
120
|
|
|
# Retry if not prime |
121
|
|
|
|
122
|
|
|
|
123
|
|
|
def are_relatively_prime(a, b): |
124
|
|
|
"""Returns True if a and b are relatively prime, and False if they |
125
|
|
|
are not. |
126
|
|
|
|
127
|
|
|
>>> are_relatively_prime(2, 3) |
128
|
|
|
1 |
129
|
|
|
>>> are_relatively_prime(2, 4) |
130
|
|
|
0 |
131
|
|
|
""" |
132
|
|
|
|
133
|
|
|
d = gcd(a, b) |
134
|
|
|
return (d == 1) |
135
|
|
|
|
136
|
|
View Code Duplication |
if __name__ == '__main__': |
|
|
|
|
137
|
|
|
print 'Running doctests 1000x or until failure' |
138
|
|
|
import doctest |
139
|
|
|
|
140
|
|
|
for count in range(1000): |
141
|
|
|
(failures, tests) = doctest.testmod() |
142
|
|
|
if failures: |
143
|
|
|
break |
144
|
|
|
|
145
|
|
|
if count and count % 100 == 0: |
146
|
|
|
print '%i times' % count |
147
|
|
|
|
148
|
|
|
print 'Doctests done' |
149
|
|
|
|